МАТЕМАТИЧНА МОДЕЛЬ ЗАДАЧІ ОПТИМІЗАЦІЇ ЛОГІСТИЧНИХ МЕРЕЖ В УМОВАХ ІНТЕРВАЛЬНОЇ ВИЗНАЧЕНОСТІ ВХІДНИХ ДАНИХ

Автор(и)

  • Володимир Валентинович Безкоровайний Харківський національний університет радіоелектроніки, Україна
  • Володимир Михайлович Русскін Харківська гуманітарно-педагогічна академія, Україна
  • Сергій Володимирович Тітов Харківська гуманітарно-педагогічна академія, Україна

DOI:

https://doi.org/10.30977/BUL.2219-5548.2023.102.1.95

Ключові слова:

логістична мережа, оптимізація, прийняття рішень, реінжинірин, структура, топологія

Анотація

Запропонована математична модель задачі оптимізації централізованих логістичних мереж на етапі реінжинірингу для випадку інтервальної визначеності вхідних даних. Для вибору рішень запропоновано використовувати індекси порівняння на основі узагальненої різниці Хукухари. Практичне використання запропонованої моделі дозволить підвищити достовірність результатів оптимізації в процесах проєктування, планування розвитку та реінжинірингу мереж.

Біографії авторів

Володимир Валентинович Безкоровайний, Харківський національний університет радіоелектроніки

д.т.н., проф., каф. системотехніки

Володимир Михайлович Русскін, Харківська гуманітарно-педагогічна академія

к.т.н., доц., каф. інформатики

Сергій Володимирович Тітов, Харківська гуманітарно-педагогічна академія

к.т.н., доц., каф. системотехніки

Посилання

Furlanetto, B. V. R., Marins, F. A. S., Silva, A. F., & Defalque, C. M. (2020) Optimization of a logis-tics network considering allocation of facilities and taxation aspects. Gestão & Produção, 27(4), e4918. Retrived from: https://doi.org/10.1590/0104-530X4918-20 (ac-cessed: 06.10.2023).

Beskorovainyi, V., Sudik, A. (2021). Optimization of topological structures of centralized logistics networks in the process of reengineering. Innova-tive Technologies and Scientific Solutions for Industries. No. 1 (15). P. 23–31. Retrived from: https://doi.org/10.30837/ITSSI.2021.15.023 (ac-cessed: 06.10.2023).

Govindan, K., Fattahi, M., Keyvanshokooh, E. (2017). Supply chain network design under uncer-tainty: A comprehensive review and future re-search directions. European Journal of Opera-tional Research, Vol. 263, Р. 108–141. Retrived from: https://www.sciencedirect.com/science/article/pii/S0377221717303429 (accessed: 06.10.2023).

Pascual Cortés Pellicer, Faustino Alarcón Valero (2018). Identification of Reverse Logistics Deci-sion Types from Mathematical Models. Journal of Industrial Engineering and Management. No. 11 (2). P. 239–249. Retrived from: https://www.jiem.org/index.php/jiem/article/view/2530 (accessed: 06.10.2023).

Rodríguez J. V., Niño J. P. C., Negrete K. A. P. [etc.] (2022) Optimization of the distribution lo-gistics network: a case study of the metalworking industry in Colombia. Procedia Computer Sci-ence. 198, 524–529. Retrived from: https://www.sciencedirect.com/science/article/pii/S1877050921025199#section-cited-by (ac-cessed: 25.05.2023).

Morozov O. O. (2023). Metodyka rozviazannia zadachi syntezu topolohichnoi ta funktsionalnoi struktur system remontu ozbroiennia i viiskovoi tekhniky [The method of solving the problem of synthesis of topological and functional structures of systems of repair of weapons and age-old equipment]. Scientific Bulletin of the Kyiv Insti-tute of the National Guard of Ukraine, 1. 6–10 [in Ukrainian]. Retrived from: https://kingu-visnyk.kyiv.ua/index.php/journal/article/view/12 (accessed: 25.05.2023).

Bezkorovainyi V. V., Nefodov L. I., Russkin V. M. (2021) Matematychna model strukturno-topolohichnoi optymizatsii lohistychnykh merezh [Mathematical model of structural and topologi-cal optimization of logistics networks]. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 4, 26–33 [in Ukrainian]. Retrived from: 10.30977/BUL.2219-5548.2021.95.0.178 (accessed: 25.05.2023).

Beskorovainyi V., Draz О. (2021) Mathematical models of decision support in the problems of lo-gistics networks optimization. Innovative Tech-nologies and Scientific Solutions for Industries, 4 (18), 5–14. Retrived from: https://doi.org/10.30837/ITSSI.2021.18.005 (ac-cessed: 29.05.2023).

Gattuso D., Cassone G. C., Pellicanò D. S. (2014) A Micro-simulation Model for Performance Evaluation of a Logistics Platform. Transportation Research Procedia, 3, 574–583. Retrived from: https://doi.org/10.1016/j.trp-ro.2014.10.036 (accessed: 29.05.2023).

Larson P. D. (2018) Relationships between Logistics Performance and Aspects of Sustainability: A Cross-Country Analysis. Journal of Transport and Supply Chain Management, 12, 623–632. Retrived from: doi: 10.3390/su13020623 (accessed: 29.05.2023).

Furtak A., Błażej M. (2020) Green supply chain. Developing logistics with care for the. Acta Uni-versitatis Nicolai Copernici, 47, 65–73. Retrived from: http://dx.doi.org/10.12775/AUNC_ZARZ-.2020.1.006 (accessed: 15.10.2023).

Jo D., Kwon C. (2022) Structure of Green Supply Chain Management for Sustainability of Small and Medium Enterprises. Sustainability, 14, 1, 50. Retrived from: https://doi.org/10.3390/su14010-050 (accessed: 29.05.2023).

Ye Y, Wang J. (2017) Study of logistics network optimization model considering carbon emis-sions. International Journal of System Assurance Engineering and Management, 8, 2, 1102–1108. Retrived from: doi: 10.1007/s13198-017-0576-x (accessed: 05.09.2023).

Pollock B., Dutta S. (2016) Driving Returns in the Reverse Logistics Service Chain. Reverse Logis-tics Magazine, 16, 26–29.

Rubio S., Jiménez-Parra B., Chamorro-Mera A., Miranda F. J. (2019) Reverse Logistics and Urban Logistics: Making a Link. Sustainability, 11, 20. Retrived from: https://doi.org/10.3390/su112056-84 (accessed: 05.09.2023).

Kovtun T. (2020) A model of closed circuits forming in a logistics system with feedback. In-novative Technologies and Scientific Solutions for Industries, 4 (14), 113–120. Retrived from: https://doi.org/10.30837/ITSSI.2020.14.113 (ac-cessed: 12.09.2023).

Beskorovainyi V., Kuropatenko O., Gobov D. (2019) Optimization of transportation routes in a closed logistics system. Innovative Technolo-gies and Scientific Solutions for Industries, 4 (10), 24-32. Retrived from: https://itssi-journal.com/index.php/ittsi/article/vi-ew/156 (ac-cessed: 12.09.2023).

Yang T., Wang W. (2022) Logistics Network Dis-tribution Optimization Based on Vehicle Sharing, Sustainability, 14, 2159. Retrived from: DOI: https:// doi.org/10.3390/su14042159 (accessed: 25.05.2023).

Douiri L., Jabri A., El Barkany A. (2016) Models for Optimization of Supply Chain Network De-sign Integrating the Cost of Quality: A Literature Review. American Journal of Industrial and Business Management, 6, 8. P. 860–876 Retrived from: doi: 10.4236/ajibm.2016.68082 (accessed: 05.09.2023).

Beskorovainyi, V., Kolesnyk, L., Yevstrat D. (2022) Formalization of the problem of transport logistics optimization networks at the stage of reengineering. Innovative Technologies and Sci-entific Solutions for Industries, 2, 20, 5–13. Retrived from: https://journals.uran.ua/itssi/ar-ticle/view/262022 (accessed: 12.09.2023).

Jiang C., Han X., Xie H. (2021) The Basic Princi-ples of Interval Analysis. Nonlinear Interval Op-timization for Uncertain Problems, 25–34. Retrived from: https://doi.org/10.1007/978-981-15-8546-3_2 (accessed: 19.09.2023).

Guerra M. L., Stefanini L. (2012) A comparison index for interval ordering based on generalized Hukuhara difference. Soft Computing, 16, 11, 1–25. Retrived from: https://doi.org/10.1007-/s00500-012-0866-9 (accessed: 19.09.2023).

Stefanini L., Guerra M. L., Amicizia B. (2019) Interval Analysis and Calculus for Interval-Valued Functions of a Single Variable. Part I: Partial Orders, gH-Derivative, Monotonicity. Axi-oms, 8, 4, 113. Retrived from: https://doi.org/10.3390/axioms8040113 (ac-cessed: 19.09.2023).

Stefanini L., Arana-Jimenez M. (2019) Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets and Systems, 362, 1–34. Retrived from: https://doi.org/10.1016/j.fss.2018.04.009 (ac-cessed: 26.09.2023).

Kosheleva O., Kreinovich V., Pham. U. (2021) Decision-making under interval uncertainty revis-ited. Asian Journal of Economics and Banking, 5, 1, 79–85. Retrived from: https://doi.org/10.1108/AJEB-07-2020-0030 (ac-cessed: 26.09.2023).

Beskorovainyi V., Kolesnyk L., Mgbere Ch. (2023) Mathematical models for determining the Pareto front for building technological processes options under the conditions of interval presenta-tion of local criteria. Innovative Technologies and Scientific Solutions for Industries, 2 (24), 16–26. Retrived from: https://journals.uran.ua/itssi/artic-le/view/285493 (accessed: 12.09.2023).

Beskorovainyi V., Kolesnyk L. (2021) Interval model of multi-criterion task of reengineering physical structures of distributed databases. Intel-ligent information systems for decision support in project and program management: Collective monograph. Riga: ISMA, Р. 7–14. Retrived from: https://doi.org/10.30837/MMP.2021.007 (ac-cessed: 19.09.2023).

Beskorovainyi V., Іmanhulova Z. (2017) Тech-nology of large-scale objects system optimiza-tion. ECONTECHMOD, 06, 4, 3–8. Retrived from: https://bibliotekanauki.pl/articles/410841 (accessed: 19.09.2023).

##submission.downloads##

Опубліковано

2023-12-04

Номер

Розділ

ТРАНСПОРТНІ ТЕХНОЛОГІЇ