Автоматизований моніторинг мостових споруд на основі штучного інтелекту
DOI:
https://doi.org/10.30977/BUL.2219-5548.2025.109.0.81Ключові слова:
мости, моніторинг технічного стану, штучний інтелект, машинне навчання, безруйнівне тестування, згорткові нейронні мережі, детектори об’єктівАнотація
Мостові споруди є критично важливою складовою транспортної інфраструктури, що потребує постійного моніторингу для виявлення дефектів та запобігання аваріям. Традиційні методи візуального огляду та польові випробування поступаються місцем безруйнівним технологіям – георадарному скануванню, інфрачервоній термографії, лазерному скануванню й відеоаналізу – у поєднанні з мережею IoT‑сенсорів. Інтеграція цих даних із алгоритмами штучного інтелекту та машинного навчання дозволяє автоматизувати виявлення аномалій, класифікацію дефектів і прогнозне обслуговування, значно підвищуючи точність і оперативність діагностики. Огляд сучасних підходів відображає використання CNN, R‑CNN, YOLO, MiniRocket та гібридних фізико-цифрових моделей, а також показує ключові виклики: якість і різноманітність даних, інтерпретованість алгоритмів, обчислювальні обмеження в польових умовах і стійкість до перешкод. Пропонуються напрями подальших досліджень для створення прозорих, адаптивних і енергоефективних систем моніторингу мостів.
Посилання
Zhang Y, Yuen K-V., “Review of artificial intelligence-based bridge damage detec-tion,” Advances in Mechanical Engineering, vol. 14(9), pp. 1-21, Sept. 2022.
https://doi.org/10.1177/16878132221122770
Zhao Tianqi, Gou Hongye, Chen Xuanying, et al., “Research progress of bridge informatiza-tion and Intelligent Bridge in 2020,” Journal of Civil and Environmental Engineering, vol. 43(S1), pp. 268-279, April 2021,
https://doi.org/10.1016/j.jtte.2023.07.010.
Xuan-Kien Dang, Le Anh-Hoang Ho, Xuan-Phuong Nguyen, Ba-Linh Mai, “Applying arti-ficial intelligence for the application of bridges deterioration detection system,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 20(1), pp. 149-157, Feb. 2022,
https://doi.org/10.12928/TELKOMNIKA.v20i1.20783.
Ruiz-Sandoval, N. Kurata, “Smart sensing technology: opportunities and challenges,” Struct Control Health Monitoring, vol. 11, pp. 349-368, Dec. 2004, https://doi.org/10.1002/stc.48.
X. He, J. Fang, A. Scanlon, and Z. Chen. Wave-let-based nonstationary wind speed model in Dongting Lake cable-stayed bridge,” Engineer-ing, vol. 2, no. 11, pp. 895-903, Jan. 2010, https://doi.org/10.4236/engineering.2010.211113.
Long, Y., & Guo, W., “Research progress of intelligent operation and maintenance of high-speed railway bridges,” Intelligent Transporta-tion Infrastructure, vol. 1, pp. 1-22, Nov. 2022, https://doi.org/10.1093/iti/liac015.
Zhang Yiming, Wang Hao, Mao Jianxiao, Xu Zi-Dong, Zhang Yu-Feng, “Probabilistic Framework with Bayesian Optimization for Predicting Typhoon-Induced Dynamic Re-sponses of a Long-Span Bridge,” Journal of Structural Engineering, vol. 147 (1), April 2021, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002881.
Wang Hao, Mao Jianxiao, Zd Xu, “Investiga-tion of dynamic properties of a long-span ca-ble-stayed bridge during typhoon events based on structural health monitoring,” Journal of Wind Engineering and Industrial Aerodynam-ics, vol. 201, June 2020, https://doi.org/10.1016/j.jweia.2020.104172.
König J., Jenkins M., Mannion M., Barrie P., Morison G., “What’s cracking? A review and analysis of deep learning methods for structur-al crack segmentation, detection and quantifi-cation,” arXiv:2202.03714, pp. 1-18, Feb. 2022 https://doi.org/10.48550/arXiv.2202.03714.
Mishra A., Gangisetti G., Khazanchi D., “Inte-grating Edge‑AI in structural health monitoring domain,” arXiv:2304.03718, pp. 1-7, April 2023, https://doi.org/10.48550/arXiv.2304.03718.
Plevris V., “Addressing the pitfalls of im-age‑based structural health monitoring: A fo-cus on false positives, false negatives, and base rate bias,” Stochastic Environmental Research and Risk Assessment, Oct. 2024, pp. 1-18, https://arxiv.org/abs/2410.20384.
Qiu Y., Ahmed B., Abueidda D. W., El‑Sekelly W., García de Soto B., Abdoun T., Mobasher M. E., “Damage identifi-cation for bridges using machine learning: De-velopment and application to KW51 bridge,” arXiv:2408.03002, Aug. 2024, https://doi.org/10.48550/arXiv.2408.03002.
Sajedi S. O., Liang X. “Model uncertainty quantification for reliable deep vision struc-tural health monitoring,” arXiv:2004.05151, pp. 1-15, Apr. 2020, https://doi.org/10.48550/arXiv.2004.05151.
Sun Z., Chen T., Meng X., Bao Y., Hu L., Zhao R. “A critical review for trustworthy and explainable structural health monitoring and risk prognosis of bridges with human-in-the-loop”, Sustainability, vol. 15(14), pp. 1-28, April 2023, https://doi.org/10.3390/su15086389
Teng S., Chen G., Gong P., Liu G., Cui F., “Structural damage detection using convolu-tional neural networks combining strain energy and dynamic response”. Meccanica, vol. 55(4), pp. 945-959, Oct. 2019, https://doi.org/10.1007/s11012-019-01052-w.
Wu J., Xu X., Liu C., Deng C., Shao X., “Lamb wave‑based damage detection of composite structures using deep convolutional neural network and continuous wavelet transform,” Sensors, vol. 21(3), Jan. 2021, pp. 1-19, https://doi.org/10.3390/s21030743.
Gómez-Cabrera A. M., Escamilla-Ambrosio P. J., “Review of machine-learning techniques applied to structural health monitoring systems for building and bridge structures,” Applied Sciences, vol. 12(21), 10754, pp. 1-40, Oct. 2022, https://doi.org/10.3390/app122110754.
Li X., Zhang Y., Chen W., “Enhancing bridge inspection data quality using machine learn-ing,” Automation in Construction, vol. 175, pp. 106182, July 2025,
https://doi.org/10.1016/j.autcon.2025.106182.
Chao Jiang, Chong Wu, C.S. Cai, Xu Jiang, Wen Xiong, “Corrosion fatigue analysis of stay cables under combined loads of random traffic and wind,” Engineering Structures, vol. 206, March 2020,
https://doi.org/10.1016/j.engstruct.2019.110153.
Vanlanduit S., Sorgente M., Zadeh A.R., Güemes A., Faisal N., “Strain Monitoring,” in Structural Health Monitoring Damage Detec-tion Systems for Aerospace, Cham, Switzer-land: Springer Aerospace Technology, 2021, pp. 219–241, https://doi.org/10.1007/978-3-030-72192-3.
Rabi R.R., Vailati M., Monti G., “Effectiveness of Vibration-Based Techniques for Damage Localization and Lifetime Prediction in Struc-tural Health Monitoring of Bridges: A Compre-hensive Review,” Buildings, vol. 14(4), 1183, April 2024, https://doi.org/10.3390/buildings14041183.
Merlino P., Abramo A., “Deformation Detec-tion in Structural Health Monitoring,” in New Developments in Sensing Technology for Structural Health Monitoring, S.C. Mukho-padhyay, Ed., Berlin Heidelberg, Germany: Springer, 2011, pp. 41-62,
https://doi.org/10.1007/978-3-642-21099-0_3.
Chris Townsend, Steven Arms, “CHAPTER 22 - Wireless Sensor Networks: Principles and Applications,” in Sensor Technology Hand-book, Jon S. Wilson, Ed., Newnes, 2005, pp. 575-589. https://doi.org/10.1016/B978-075067729-5/50062-8.
Tianshu Li, Mohamad Alipour, Devin K. Har-ris. “Mapping textual descriptions to condition ratings to assist bridge inspection and condi-tion assessment using hierarchical attention,” Automation in Construction, vol. 129, pp. 103801, Sept. 2021, https://doi.org/10.1016/j.autcon.2021.103801.
Papanikolaou Vassilis, Mixios Konstantinos, Stefanidou Sotiria, Markogiannaki Olga, “De-signing a Low-Cost Wireless Sensing System for Real Time Damage Assessment of R/C Brides,” COMPDYN 2023. 9 th ECCOMAS Thematic Conference on Computational Meth-ods in Structural Dynamics and Earthquake Engineering, pp. 3831-3841, June 2023,
https://doi.org/10.7712/120123.10683.22213.
J. A. Rice, K. Mechitov, S.-H. Sim et al., “Flex-ible smart sensor framework for autonomous structural health monitoring,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 423-438, 2010.
A. S. Kiremidjian, G. Kiremidjian, P. Sarabandi, “A wireless structural monitoring system with embedded damage algorithms and decision support system,” Structure and Infrastructure Engineering, vol. 7, no. 12, pp. 881-894, 2011, https://doi.org/10.1080/15732470903208773.
S. Cho, J. P. Lynch, and C.-B. Yun, “Develop-ment of a low-cost automated tension estima-tion system for cable-stayed bridges,” Pro-ceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS ’08), pp. 279-287, July 2009, https://doi.org/10.1115/SMASIS2008-614.
S. Cho, J. P. Lynch, J.-J. Lee, and C.-B. Yun, “Development of an automated wireless ten-sion force estimation system for cable-stayed bridges,” Journal of Intelligent Material Sys-tems and Structures, vol. 21, no. 3, pp. 361-376, Oct. 2009, https://doi.org/10.1177/1045389X09350719.
Y. Gao, B. F. Spencer Jr., “Structural health monitoring strategies for smart sensor net-works,” University of Illinois at Urbana-Champaign, July 2005, p. 127.
D. Bernal, “Load vectors for damage localiza-tion,” Journal of Engineering Mechanics, vol. 128, no. 1, pp. 7-14, Jan. 2002, https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(7)
Lawal O., S.A.V. Sriram, K. Mechitov, B.F. Spencer Jr., “Edge Integration of Artificial In-telligence into Wireless Smart Sensor Plat-forms for Railroad Bridge Impact Detection,” Sensors 2024, vol. 24(17), 5633, pp. 1-14, Aug. 2024, https://doi.org/10.3390/s24175633.
Arnold Matthias, Keller Sina, “Machine Learn-ing and Signal Processing for Bridge Traffic Classification with Radar Displacement Time-Series Data,” Infrastructures, vol. 9(3), 37, pp. 1-20, Feb. 2024, https://doi.org/10.3390/infrastructures9030037.
Rohit Bokade, Alfred Navato, Ruilin Ouyang, Xiaoning Jin, Chun-An Chou, Sarah Ostadab-bas, Amy V. Mueller, “A cross-disciplinary comparison of multimodal data fusion ap-proaches and applications: Accelerating learn-ing through trans-disciplinary information sharing,” Expert Systems with Applications, vol. 165, pp. 113885, March 2021, https://doi.org/10.1016/j.eswa.2020.113885.
Lattanzi D., Miller G. R. “Review of computer vision-based structural health monitoring using unmanned aerial vehicles,” Journal of Compu-ting in Civil Engineering, vol. 31(6), 2017.
Yuchen Wang, C.S. Cai, Bing Han, Huibing Xie, Fengling Bao, Hanliang Wu, “A deep learning-based approach for assessment of bridge condition through fusion of multi type inspection data,” Engineering Applications of Artificial Intelligence, vol. 128, Feb. 2024,
https://doi.org/10.1016/j.engappai.2023.107468.
Saseethar S., Narkhede D. I., “Revolutionising Visual Bridge Inspection: A Deep Learning Approach for Automated Concrete Bridge Dis-tress Identification & Analysis of Results,” Proceedings of the 9h World Congress on Civ-il, Structural, and Environmental Engineering (CSEE 2024), vol. 146, pp. 1-10, April 2024 https://doi.org/10.11159/icsect24.146
Alqurashi I., Debees Marwan, Matsumoto Ma-sato, Alqarfi Ahmed, Catbas Necati, “Integrat-ed utilization of infrared and ultrasound tech-nologies for bridges,” Bridge Maintenance, Safety, Management, Digitalization and Sus-tainability, 2024, pp. 453-459,
https://doi.org/10.1201/9781003483755-49 .
Watase Azusa, Recep Birgul, Shuhei Hiasa, Masato Matsumoto, Koji Mitani, F. Necati Cat-bas. “Practical Identification of Favorable Time Windows for Infrared Thermography for Concrete Bridge Evaluation,” Construction and Building Materials, vol. 101(1), pp. 1016-1030, Dec. 2015,
https://doi.org/10.1016/j.conbuildmat.2015.10.156.
Pham Thuy Duong, Reena Amatya Shrestha, Jurate Virkutyte, Mika Sillanpää, “Recent Studies in Environmental Applications of Ul-trasound,” Canadian Journal of Civil Engi-neering, vol. 36(11), pp. 1849–1858, Nov. 2009, http://dx.doi.org/10.1139/L09-068
Wei Ding, Han Yang, Ke Yu, “Jiangpeng Shu, Crack detection and quantification for con-crete structures using UAV and transformer,” Automation in Construction, vol. 152, pp. 104929, Aug. 2023,