Сорбційні властивості мідно-цинкового феритного композита
DOI:
https://doi.org/10.30977/BUL.2219-5548.2025.108.0.39Ключові слова:
метод співосадження, відпрацьовані електроліти, іони Cu2 , сорбційні властивості, феритні композитиАнотація
У роботі обґрунтовано й експериментально підтверджена можливість одержання мідно-цинкових феритних матеріалів із сульфатного мідно-цинкового електроліту методом співосадження. Досліджено ефективність його сорбційних властивостей в стаціонарному режимі.
Посилання
Ahmed J., Thakur A., Goyal A. (2021). Industrial Wastewater and Its Toxic Effects. Book chapter: Biological Treatment of Industrial Wastewater, 1–14. https://doi.org/10.1039/9781839165399-00001
Lavinia L., Cocheci L. (2023). Heavy Metals Removal from Water and Wastewater. Book chapter: Heavy Metals ‒ Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.104133.
Datsenko, V. V., Khobotova, E. B., Kolodiazhnyi, V. M., Lisin, D. O. (2022). The efficiency of purification of solutions from organic dyes with the use of copper-zinc ferrites. Journal of Chemistry and Technologies, 30(2), 184–191. http://doi.org/10.15421/jchemtech.v30i2.250987.
Solodovnik, T. V., Tolstopalova, N. M., Fomina, N. M., Yakymenko, I. K. (2019). Doslidzhennia protsesiv ochyshchennia zabarvlenykh rozchyniv pry vykorystanni neorhanichnykh koahuliantiv ta pryrodnoho flokulianta. Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu, 3, 108‒116. http://doi.org/10.24025/2306-4412.3.2019.167654.
Li, H., Liu, S., Zhao, J., Feng, N. (2016). Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 222–227. http://doi.org/10.1016/j.colsurfa.2016.01.048.
Madani, M. (2021). Destruction of dyes in wastes of textile products. Technogenic and ecological safety, 10(2/2021), 58–63. http://doi.org/10.52363/2522-1892.2021.2.9.
Kanakaraju, D., Glass, B. D., Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of environmental management, 219, 189–207. http://doi.org/10.1016/j.jenvman.2018.04.103.
Guo, J., Zhang, Q., Cai, Z., Zhao, K. (2016). Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Separation and Purification Technology, 161, 69–79. http://doi.org/10.1016/j.seppur.2016.01.036.
Zou, H., Ma, W., Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation. Archives of Environmental Protection, 41(4), 33–39. http://doi.org/10.1515/aep-2015-0037.
Kutsan, N. V., Vozniak, V. S., Ivanenko, I. M. (2019). Doslidzhennia adsorbtsiinykh vlastyvostei chystykh i kompozytnykh ferytiv. Scientific Journal «ScienceRise», 9–10(62–63), 32–37. http://doi.org/10.15587/2313-8416.2019.180982
ALOthman Z.A., Ali R., Naushad M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J., 184, 238–247.
Naushad M., Ahamad T., Sharma G., Alam M.M., ALOthman Z.A., Alshehri S.M., Ghfar A.A. (2016). Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem. Eng. J., 300, 306–316. http://doi.org/10.1016/j.cej.2016.04.084
Albadarin A.B., Maurice N. Collins, Naushad M., Saeed Shirazian. (2017). Activated lignin–chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J., 307, 264–272. https://doi.org/10.1016/j.cej.2016.08.089Получить права и контент
Mironyuk I.F., Gun’ko V.M., Vasylyeva H.V., Goncharuk O.V., Tatarchuk T.R., Mandzyuk V.I., Bezruka N.A., Dmytrotsa T.V. (2019). Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous. Mater., 277, 95–104. https://doi.org/10.1016/j.micromeso.2018.10.016
Harikishore Kumar Reddy D., Yeoung-Sang Yun. (2016). Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev., 315, 90–111. https://doi.org/10.1016/j.ccr.2016.01.012
Tatarchuk T., Bououdina M., Al-Najar B., Bitra R.B. (2019). Green and Ecofriendly Materials for the Remediation of Inorganic and Organic Pollutants in Water. In: Naushad M. (eds) A New Generation Material Graphene: Applications in Water Technology., Springer, Cham, 69–110. https://doi.org/10.1007/978-3-319-75484-0_4
Datsenko V.V., Khobotova E.B., Kolodiazhnyi V.M., Lisin D.O. (2022). The use of ferrite composites for waste water purification from organic dyes. Functional Materials, 29(3), 462–467. https://doi.org/10.15407/fm29.02.462.
Datsenko V.V., Khobotova E.B. (2024). Optimization of the wastewater purification process from organic dyes using the ferrite composite. Journal of Chemistry and Technologies, 32(1), 183–190. https://doi.org/10.15421/jchemtech.v.
Liu F., Zhou K., Chen Q., Wang A., Chen W. (2018). Preparation of magnetic ferrite by optimizing the synthetic pH and its application for the removal of Cd(II) from Cd-NH3 -H2O system. J. Mol. Liq., 264, 215–222.
Vicente-Martínez Y., Ruiz-Mendieta M., Caravaca-Garratón M., Hernández-Córdoba M., López-García I. (2023), Fast Procedure for Removing Silver Species in Waters Using a Simple Magnetic Nanomaterial. Separations, 10, 398. https://doi.org/10.3390/separations10070398
Tatarchuk T., Paliychuk N., Bitra Rajesh Babu, Shyichuk A., Naushad Mu., Mironyuk I., Ziolkowska D. (2019) Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalination and Water Treatment, 150, 374–385. https://doi.org/10.5004/dwt.2019.23751.
JCPDS PDF-1 File [Electronic resource]. (1994). ICDD: The Intern. Centre Diffr. Data, PA, USA.
Rodriguez-Carvajal J., Roisnel T. (1998). FullProf.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Com. Powder Diffr., Intern. Union Crystallogr., Newsletter, 20(19).