КЕРУВАННЯ РУХОМ ФРОНТАЛЬНОГО НАВАНТАЖУВАЧА ЗА ЗАДАНОЮ ТРАЄКТОРІЄЮ
DOI:
https://doi.org/10.30977/BUL.2219-5548.2023.101.0.26Ключові слова:
фронтальний навантажувач, стеження за траєкторією, система керування, регулятор стануАнотація
В статті запропоновано систему керування рухом за заданою траєкторією автономного малогабаритного навантажувача з жорсткою рамою. Система керування складається з двох контурів: розімкнутого та замкнутого. Керуючий вплив розімкнутого контуру системи керування ґрунтується на використанні бажаних швидкостей та прискорень навантажувача. Другим контуром є регулятор зі зворотним зв'язком у просторі станів. Для синтезу цього регулятора виконана лінеаризація кінематичної моделі навантажувача зворотним зв’язком.
Посилання
L. Razarenov, N. Rozenfel'd and D. Voronovskyy, "Analysis of technical development of small-sized loaders with on-board swing system", Bull. Kharkov Nat. Automobile Highway Univ., no.95, p. 102-106, 2021, doi: https://doi.org/10.30977/bul.2219-5548.2021.95.0.102. (in Ukrainian).
V. Nezhadali, B. Frank and L. Eriksson, “Wheel loader operation–optimal control compared to r-eal drive experience,” Control Engineering Practice, 48, 2016, pp. 1–9, doi: https://doi.org/10.1016/j.conengprac.2015.12.015.
B. Frank, L. Skogh and M. Alaküla, "On wheel loader fuel efficiency difference due to operator behaviour distribution", in Second Int. Commer-cial Vehicle Technol. Symp. 2012. Available at: https://www.iea.lth.se/publications/Papers/Frank_2012.pdf
R. Filla, "An event-driven operator model for dynamic simulation of construction machinery", у Ninth Scand. Int. Conf. Fluid Power, Linkö-ping, Sweden. 2005. Available at: http://www.arxiv.org/abs/cs.CE/0506033
L. Razarenov, "Assessment of the quasi-static stability of PMTS-1200 skid-steer loaders", Bull. Kharkov Nat. Automobile Highway Univ., no.65-66, pp. 107-112, 2014 (in Ukrainian).
J. Larsson, M. Broxvall and A. Saffiotti, "An evaluation of local autonomy applied to teleo-?erated vehicles in underground mines," 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 2010, pp. 1745-1752, doi: https://doi.org/10.1109/ ROBOT.2010.5509276.
R. Filla, "An event-driven operator model for dynamic simulation of construction machinery", Ninth Scand. Int. Conf. Fluid Power, Linköping, Sweden. 2005. Available at: http://www.arxiv.org/abs/ cs.CE/0506033.
Dadhich, S., Bodin, U. and Andersson, U. (2016) “Key challenges in automation of Earth-moving machines,” Automation in Construction, 68, pp. 212–222, doi: https://doi.org/10.1016/ j.autcon.2016.05.009.
S. Dadhich, U. Bodin, F. Sandin, and U. Andersson, “From Tele-remote operation to semi-automated wheel-loader,” International Journal of Electrical and Electronic Engineering & Telecommunications., pp. 178–182, 2018, doi: https://doi.org/10.18178/ijeetc.7.4.178-182.
E. Halbach, "Autonomous area clearing with a robotic wheel loader", 15th Symposium on Ad-vanced Space Technologies in Robotics and Au-tomation (ASTRA), Noordwijk, The Netherlands. 2019.
S. Backman, D. Lindmark, K. Bodin, M. Servin, J. Mörk, and H. Löfgren, “Continuous control of an underground loader using deep reinforcement learning,” Machines, vol. 9, no. 10, p. 216, 2021, doi: https://doi.org/10.3390/machines9100216.
B. Frank, L. Skogh and R. Filla, “On increasing fuel efficiency by operator assistant systems in a wheel loader,” International Conference on Advanced Vehicle Technologies and Integration, Changchun, China, 2012, pp. 155–161.
J. Huang, X. Cheng, Y. Shen, D. Kong and J. Wang, “Deep-Learning-Based Prediction of Throttle Value and State for Wheel Loaders,” Energies, vol. 14, 7202, 2021, doi: https://doi.org/10.3390/en14217202.
O. Azulay and A. Shapiro, "Wheel Loader Scoop-ing Controller Using Deep Reinforcement Learn-ing," in IEEE Access, vol. 9, pp. 24145-24154, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3056625.
J. Shi, D. Sun, D. Qin, M. Hu, Y. Kan, K. Ma, and R. Chen, “Planning the trajectory of an autonomous wheel loader and tracking its trajectory via adaptive model predictive control,” Robotics and Autonomous Systems, vol. 131, pp. 103570, 2020, doi: https://doi.org/10.1016/j.robot.2020.103570.
T. Takei, K. Ichikawa, K. Okawa, S. Sarata, T. Tsubouchi and A. Torige, "Path planning of wheel loader type robot for scooping and loading operation by genetic algorithm," 2013 13th Inter-national Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, Korea (South), 2013, pp. 1494-1499, doi: 10.1109/ICCAS.2013.6704123.
Nezhadali, V., Eriksson, L. (2014). Optimal Lifting and Path Profiles for a Wheel Loader Considering Engine and Turbo Limitations. In: Waschl, H., Kolmanovsky, I., Steinbuch, M., del Re, L. (eds) Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences, vol 455. Springer, Cham, doi: https://doi.org/10.1007/978-3-319-05371-4_18.
S. Sarata, Y. Weeramhaeng and T. Tsubouchi, "Approach Path Generation to Scooping Position for Wheel Loader," Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 1809-1814, doi: 10.1109/ROBOT.2005.1570376.
B. J. Alshaer, T. T. Darabseh, and M. A. Alhanouti, “Path planning, modeling and simulation of an autonomous articulated heavy construction machine performing a loading cycle,” Applied Mathematical Modelling, vol. 37, no. 7, pp. 5315–5325, 2013, doi: https://doi.org/10.1016/ j.apm.2012.10.042.
R. Song, Z. Ye, L. Wang, T. He and L. Zhang, "Autonomous Wheel Loader Trajectory Tracking Control Using LPV-MPC," 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022, pp. 2063-2069, doi: 10.23919/ACC53348.2022.9867662.
O. Gurko and R. Liashov, “Movements planning of an autonomous front loader,” Ukrainian conference Computer-integrated technologies for automating technological processes in transport and manufacturing, Kharkiv, Ukraine, 2021, pp. 64-67. (in Ukrainian).
L. Caracciolo, A. de Luca and S. Iannitti, "Trajec-tory tracking control of a four-wheel differentially driven mobile robot," Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 1999, pp. 2632-2638 vol.4, doi: 10.1109/ROBOT.1999.773994.
K. Kozłowski and D. Pazderski, “Modeling and control of a 4-wheel skid-steering mobile robot,” International journal of applied mathematics and computer science, vol. 14, no. 4. P. 477-496, 2004.
X. Wu, M. Xu and L. Wang, "Differential speed steering control for four-wheel independent driv-ing electric vehicle," 2013 IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, 2013, pp. 1-6, doi: 10.1109/ISIE.2013.6563667.
H. Wang, J. Zhang, J. Yi, D. Song, S. Jayasuriya, and J. Liu, "Modeling and motion stability analysis of skid-steered mobile robots," IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 2009, pp. 4112-4117. URL: https://doi.org/10.1109/robot.2009.5152342
O. Nikonov, I. Kyrychenko and V. Shuliakov, “Simulation modeling of external perturbations affecting wheeled vehicles of special purpose,” The third international workshop on computer modeling and intelligent systems (CMIS-2020), Zaporizhzhia, Ukraine, 2020. Available at: https://ceur-ws.org/Vol-2608/paper42.pdf.
J. Marshall, T. Barfoot, and J. Larsson, “Autonomous Underground tramming for center-articulated vehicles,” Journal of Field Robotics, vol. 25, no. 6-7, pp. 400–421, 2008, doi: https://doi.org/10.1002/rob.20242.