DOI: https://doi.org/10.30977/BUL.2219-5548.2019.87.0.66

Intelligent control system of quality work processes of construction and road machines (CRM)

T. Pluhina, О. Yefymenko

Анотація


The study of the intellectualization of control system of quality work processes of construction and road machines was carried out. The analysis of existing researches and publications has been made, in which the main problem is highlighted, namely that the intellectualization concept of control system of quality work processes of CRM at this time is not enough. As a result of the analysis of existing researches and publications, the purpose of research is set, namely: analytical researches, the result of which will allow to increase of functioning efficiency arrangements of CRM with working environment using neural network and adaptation algorithm in a limited time decision. The concept of monitoring work parameters using artificial intelligence which is based on the neural network and is able to predict the work of CRM actuators in real time have been substantiated. The result of the research is selection of network learning algorithm, and also a scheme of analyzer work processes has been developed. This algorithm provides an iterative procedure for determining the minimum of a multidimensional function. The practical value lies in the fact that the method of back error propagation allows to calculate gradient components of loss functions regarding model parameters. The originality is in the fact that the results obtained prove using dual layer neural network for continuous monitoring quality of CRM workflow.

Ключові слова


neural network; sensor; training algorithm; optimization; influence; working arrangements

Повний текст:

PDF

Посилання


Pluhina T.V., Stotskyi V.O. Zadacha intelektualizatsiyi suchasnykh budivelno-dorozhnikh mashyn // Tekhnolohyia pryborostroenyia: spets. vyp. – 2014. – S. 40–43. [The task of intellectualization of modern road-construction machines] [in Ukrainian].

Tarkhov D.A. Neyronnyye seti. Modeli i al-goritmy. – M.: Radiotekhnika, 2010. – 82 s. [Neural networks. Models and Algorithms] [in Russian].

Yefymenko O.V., Pluhina T.V., Musayev Z.R. Proektuvannya budivelnykh ta dorozhnikh mashyn shlyakhom porivnyannya yikh kompyuternoho ta fizychnoho doslidzhennya // Budivnytstvo, materialoznavstvo, mashyno-buduvannya. – 2017. – Vyp. 97. – S. 99–106. [Designing of Construction and Road Machines by Comparing Their Computer and Physical Research] [in Ukrainian].

Yefymenko O.V., Pluhina T.V. Modulna struktura intelektualnoyi systemy budivelnykh y dorozhnikh mashyn // Vestnyk KHNADU. – № 74. – 2015. – S. 68–73. [Modular structure of the integral system of construction and road cars] [in Ukrainian].

Yefymenko O.V., Pluhina T.V., Musayev Z. Vybir optymalnykh parametriv mashyn dlya zemlyanykh robit na osnovi statystychnoho analizu // Vestnyk KHNADU. – 2017. – Vip. 77. – S. 68–73. [The choice of optimal parameters of machines for earthworks on the basis of statistical analysis] [in Ukrainian].

Yefimenko A.V., Pluhina T.V. Innovatsionnaya sistema ZTM dlya razrabotki grunta na osnove GPS tekhnologiy // Pod´yemno transportnyye, stroitel'nyye i dorozhnyye mashiny i oborudovaniye – Dnepr: GVUZ «PGASA», 2018. – S. 69–74. [Innovative ZTM system for the development of soil based on GPS technology] [in Ukrainian].

Commuri S., Mai A.T., Zaman M. Calibration Procedures for the Intelligent Asphalt Compaction Analyzer. ASTM Journal of Testing and Evaluation. – 2009. – 37(5).


Пристатейна бібліографія ГОСТ


1. Плугіна Т.В., Стоцький В.О. Задача інтелектуалізації сучасних будівельно-дорожніх машин // Технология приборостроения. – 2014. – С. 40–43.

2. Тархов Д.А. Нейронные сети. Модели и алгоритмы. – Москва: Радиотехника, 2010. – 82 с.

3. Єфименко О.В., Плугіна Т.В., Мусаєв З.Р. Проектування будівельних та дорожніх машин шляхом порівняння їх комп’ютерного та фізичного дослідження // Будівництво, матеріалознавство, машинобудування. – 2017. – Вип. 97. – С. 99–106.

4. Єфименко О.В., Плугіна Т.В. Модульна структура інтелектуальної системи будівельних й дорожніх машин // Вестник ХНАДУ. – № 74. – 2015. – С. 68–73.

5. Єфименко О.В., Плугіна Т.В., Мусаєв З. Вибір оптимальних параметрів машин для земляних робіт на основі статистичного аналізу // Вестник ХНАДУ. – 2017. – Вип. 77. – С. 68–73.

6. Ефименко А.В., Плугина Т.В. Инновационная система ЗТМ для разработки грунта на основе GPS технологи // Подъемно-транспортные, строительные и дорожные машины и оборудование. – Днепр: ГВУЗ «ПГАСА», 2018. – С. 69–74.

7. Commuri S., Mai A.T., Zaman M. Calibration Procedures for the Intelligent Asphalt Compaction Analyzer. ASTM Journal of Testing and Evaluation. – 2009. – 37(5).