The effect of stabilizing additives on deformation performance of stone matrix asphalt

Автор(и)

  • V. Psiurnyk Kharkiv National Automobile and Highway University, Ukraine
  • V. Maliar Kharkiv National Automobile and Highway University, Ukraine

DOI:

https://doi.org/10.30977/BUL.2219-5548.2019.86.1.192

Ключові слова:

stone matrix asphalt, stabilizing additives, deformation indicators, rheological properties, shear stability, crack resistance

Анотація

The goal of the research is to establish the effect of stabilizing additives on a number of deformation and strength indicators responsible for ensuring the durability of stone matrix asphalt (SMA), which are the complex modulus of elasticity, shear stability and bending tension.  The modulus of elasticity value measurement was made on KhNAHU’s vibration table using electrodynamic transducer in the temperature range from -20 °C to +50 °C. In the deformation frequency range from 0.01 Hz to 50 Hz, shear stability was estimated by the value of shear limit strength at the temperature of 50 °C on special cylinder samples in conditions of their torsion (simple shear). The bending tension value was estimated on beam sample at different load application rate at the design temperatures of 20 °C, 10 °C and 0 °C. According to temperature dependences of modulus of elasticity, the estimate of SMA physical parameters, such as conditional mechanical glass transition temperature, viscoplastic transition temperature, temperature sensitivity of material and plasticity coefficient, was obtained. The values of shear limit strength with different stabilizing additives (VIATOP, DOLONIT) were obtained. A correlation between shear stability and compressive strength at the temperature of 50 °C was established.  Comparison of deformation properties of SMA with asphalt concrete and polymer asphalt concrete using the same consistency of binder was made. The effectiveness of SMA hardening by different stabilizing additives on the basis of temperature dependences of bending strength was determined. The plastic range and temperature sensitivity values of SMA are similar to those of asphalt concrete and polymer asphalt concrete. These parameters are mainly determined by the properties of binder, such as penetration, softening temperature, etc. Polymer asphalt concrete has the highest value of plastic range and the lowest one of temperature sensitivity. The similar patterns are obtained for shear stability. The choice of stabilizing additives affects the deformation-strength properties of SMA. To improve durability of SMA, it is necessary to use polymer modified bitumen

Посилання

Krzysztof Blazejowski (2007). Stone Matrix Asphalt. Theory and Practice Warszawa: Rettenmaier Polska sp. z o.o. 614 p.

Veren'ko V.A., Zankovich V.V. Shhebenochno-mastichnye asfal'tobetony – jeffektivnyj material dorozhnyh pokrytij [Stone-mastic asphalt concrete is an effective pavement material]. Harkіv: Vestnik HNADU, 2002. Vyp. 19. Р. 130–131.

Kirjuhin G.N., Smirnov E.A. Pokrytija iz shhebenochno-mastichnogo asfal'tobetona [Stone-mastic asphalt concrete coatings] – M.: Jelit, 2009. 176 p.

Sumіshі asfal'tobetonnі і asfal'tobeton shhebenevo-mastikovі. Tehnіchnі umovi: DSTU B V.2.7-127:2015 [Mixtures of asphalt concrete and asphalt concrete rubble-mastic. Specifications: DSTU B V.2.7-127: 2015] (Chinnіj vіd 01.07.2016). Kiїv: Mіnregіonbud Ukraїni, 2016. 30 p. (Nacіonal'nij standart Ukraїni).

Dorozhnіj odjag nezhorstkogo tipu: VBN V.2.3-218-186-2004 [Road clothes of non-rigid type: VBN V.2.3-218-186-2004] (Chinnij vіd 2005-01-01). Kyiv: Derzhavna sluzhba avtomobіl'nih dorіg Ukraїni «UKRAVTODOR», 2004. 137 p. (Vіdomchі budіvel'nі normi Ukraїni).

Al-Hadidy A.I., Yi-qiu T. (2011). Effect of Styrene-Butadiene-Styrene on the Properties of Asphalt and Stone-Matrix-Asphalt Mixture. Journal of Materials in Civil Engineering. № 23. Р. 504–510.

Mojtaba Ghasemi, Seyed Morteza M. (2011). Laboratory Investigation of the Properties of Stone Matrix Asphalt Mixtures Modified With RGP–SBS. Digest Journal of Nanomaterials and Biostructures. Vol. 6. № 4. Р. 1823–1834.

Kök Baha. (2015). Performance Evaluation of CR+Paraffin Modified Stone Mastic Asphalt. Canadian Journal of Civil Engineering. Р. 1–38. URL: https://mc06.manuscriptcentral.com/cjce-pubs.

Nuha Salim Mashaan, Asim H. Ali, Suhana Koting, Mohamed Rehan K. (2013). Dynamic Properties and Fatigue Life of Stone Mastic Asphalt Mixtures Reinforced with Waste Tyre Rubber. Advances in Materials Science and Engineering. Volume 2013. Р. 1–9.

Walaa S. Mogawer, Kevin Stuart D. (1996) Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures. Transportation Research Record. № 1530. Р. 86–94.

Limуn-Covarrubias P., Avalos Cueva D. (2019). Analysis of the Behavior of SMA Mixtures with Different Fillers Through the Semicircular Bend (SCB) Fracture Test. Materials. № 12. Р. 1–15. URL: www.mdpi.com/journal/materials.

Imran Hafeeza, Kamala M.A., Mirza M.W. (2014). An experimental study to select aggregate gradation for stone mastic asphalt. Journal of the Chinese Institute of Engineers. 38:1. Р. 1–8. URL: http://www.tandfonline.com/page/terms-and-conditions.

Donald Watson E. (2003). Updated Review of Stone Matrix Asphalt and Superpave® Projects. Transportation Research Record. № 1832. Р. 217–223.

Lavasania M., Manouchehr Latifi N., Fartash H. (2015). Experimental investigation on mineral and organic fibers effect on resilient modulus and dynamic creep of stone matrix asphalt and continuous graded mixtures in three temperature levels. Construction and Building Materials. № 95. Р. 232–242.

Ratnasamy Muniandy, Bujang Huat B.K. (2006). Laboratory Diameteral Fatigue Performance of Stone Matrix Asphalt with Cellulose Oil Palm Fiber. American Journal of Applied Sciences 3 (9). Р. 2005–2010.

Yanping Sheng, Haibin Li, Ping Guo, Guijuan Zhao, Huaxin Chen, Xiong R. (2017). Effect of Fibers on Mixture Design of Stone Matrix Asphalt. Appl. Sci., 7, 297. Р. 1–12. URL: www.mdpi.com/journal/applsci.

Mansour Fakhri, Pezhouhan T. Kheiry, Mirghasemi A.A. (2012). Modeling of the permanent deformation characteristics of SMA mixtures using discrete element method, Road Materials and Pavement Design, №13:1. Р. 67–84.

Asfal'tobetonnye pokrytija [Asphalt pavement] / I.V. Korolev, V.A. Zolotarev i dr.; pod red. M.I. Volkova. Doneck: Donbass, 1970. Р. 34–47.

Zolotarev V.A. Dolgovechnost' dorozhnyh asfal'tobetonov [Durability of road asphalt concrete]. Harkіv: Vishha shkola, 1977. 116 p.

Sumishi asfal'tobetonni i asfal'tobeton dorozhnij. Metody vyprobuvan': DSTU B V.2.7-319:2016 [Mixtures of asphalt concrete and road asphalt. Test methods: DSTU B V.2.7-319: 2016] (Chynnij vid 01.07.2016). Kyiv: DP «UkrNDNC», 2017. 75 p. (Nacional'nyj standart Ukrai'ny).

Zolotar'ov V.O. Doslіdzhennja v’jazkostі bіtumu pri stacіonarnomu ta ciklіchnomu deformuvannі [Investigation of the viscosity of bitumen in stationary and cyclic deformation] Avtomobіl'nі dorogi і dorozhnє budіvnictvo. Kiїv, 2002. Vip. 12. Р. 105–110.

Zolotarev V.A., Maljar V.V., Lapchenko A.S. Reologicheskie svojstva asfal'topolimerbetonov pri dinamicheskom rezhime deformirovanija. [Rheological properties of asphalt polymer concrete in dynamic deformation]. Nauka i tehnika v dorozhnoj otrasli. 2008. № 1. P. 10–13.

Psjurnik V.A., Chuguenko S.A., Oprishko A.V., Zolotarev V.A.. Rol' volokon v formirovanii fiziko-mehanicheskih svojstv shhebenochno-mastichnogo asfal'tobetona [The role of fibers in the formation of physical and mechanical properties of crushed stone mastic asphalt concrete] Vestnik HNADU. 2005. №30. P. 203–206.

Zolotarev V.A., Chuguenko S.A., Galkin A.V. O vzaimosvjazi svojstv bitumopolimernyh vjazhushhih i sdvigoustojchivosti asfal'tobetona [The relationship between the properties of bituminous polymer binders and shear stability of asphalt concrete] Avtoshljahovik Ukrainy. 2004. № 3. Р. 25–30.

##submission.downloads##

Номер

Розділ

БУДІВНИЦТВО ТА ЦИВІЛЬНА ІНЖЕНЕРІЯ