DOI: https://doi.org/10.30977/BUL.2219-5548.2019.86.1.42

Synthesis of element base of the system of functionally planning control for technologies process

T. Pluhina, O. Kudyrko

Анотація


The task of the synthesis of element base of the system of functionally planning control for technologies process was carried out. The analysis of existing researches and publications, in which the main problem is highlighted, namely that the concept project of element base control system of software and hardware complex at this time is not enough. As a result of the analysis of existing researches and publications, the purpose of research is set, namely: to increase efficiency control system of software and hardware complex for technological process using parametric synthesis and choice of rational complex of element base. The concept of parametric synthesis, set of indicators for assessing the properties of a design system and its total effect have been substantiated. In the result of the research the structural model of an information technology of synthesis has been developed. The mathematical model of selecting the means of control systems, which has been built, will, unlike the existing ones, select the best set of means of control systems by the specified criteria and restrictions that will significantly reduce the time for objects and increase the efficiency of the enterprise performance. The practical value lies in the fact that the parametric synthesis makes it possible to design in unified system and criteria positions, structure and determine the sequence of design procedures, and affect decision time. The originality is in the fact that in the result the mathematical model of parametric synthesis of selecting the equipment of control systems for optimization technologies process and continuous monitoring quality is used.


Ключові слова


efficiency; information technology; parametric synthesis; electronic components; sensor; optimization; model; software and hardware complex

Повний текст:

PDF

Посилання


Pluhina T. V. Zadacha intelektualizatsiyi suchasnykh budivelno-dorozhnikh mashyn / T.V. Pluhina, V.O. Stotskyi // Tekhnolohyia pryborostroenyia: spets. vyp. – 2014. – S. 40–43. [The task of intellectualization of modern road-construction machines] [in Ukrainian].

Greshilov A. A. Matematicheskie metody` prinyatiya reshenij. Uchebnoe posobie. – M.: MGTU im. N.E`.Baumana, 2014. – 647 s. [Mathematical decision making methods] [in Russian].

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. Intelligent manufacturing in the context of industry 4.0: a review // Engineering. – 2017. – V. – N. 5. – P. 616–630. DOI: https://doi.org/10.1016/J.ENG.2017.05.015.

Kletti J. Manufacturing Execution System-MES. – Springer Science & Business Media, 2007, 272 p. ISBN 978-3-540-49744-8, DOI: 10.1007/978-3-540-49744-8.

Parsaye K. A. Characterization of Data Mining Technologies and Processes [Текст] / K. A. Parsaye // The Journal of Data Warehousing. – 1998.– № 1. – Р. 12–24.

Tukey J. W. Exploratory Data Analysis [Текст] / J.W.Tukey .- PA: Addison-Wesley, 1977. –689 p.

Gurko A.G. Povysheniye tochnosti otsenki so-stoyaniya dinamichnykh ob"yektov kompleksom MATLAB-Arduino pri proyektirovanii kiber-fizicheskikh sistem A.G. Gurko, A.P. Plakhteyev, P.A. Plakhteyev // Radioelektronika, informatika, upravleniye. – 2016 – №1. – C. 84-91. DOI 10.15588/1607-3274-2016-1-10. [Improving the accuracy of assessing the state of dynamic objects by the MATLAB-Arduino complex when designing cyber-physical systems]. [in Russian].

Nef'odov L. I. Obobshchennaya model' sistemno-go sinteza avtomaticheskoy transmissii / L.I. Nef'odov, A.A. Os'machko, Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy 6/4 (42) 2009 g., s. 10–14. [A generalized model of systemic synthesis of automatic transmission] [in Ukrainian].


Пристатейна бібліографія ГОСТ


1. Плугіна Т. В. Задача інтелектуалізації сучасних будівельно-дорожніх машин /Т.В. Плугіна, В. О. Стоцький. Технология приборостроения. – 2014. – С. 40–43.

2. Грешилов А. А. Математические методы принятия решений. Учебное пособие. – М.: МГТУ им. Н.Э.Баумана, 2014. – 647 с.

3. Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. Intelligent manufacturing in the context of industry 4.0: a review //Engineering. – 2017. – V. 3. – N. 5. – P. 616-630. DOI: https://doi.org/10.1016/J.ENG.2017.05.015

4. Kletti J. Manufacturing Execution System-MES. – Springer Science & Business Media, 2007, 272 p. ISBN 978-3-540-49744-8, DOI: 10.1007/978-3-540-49744-8.

5. Parsaye K. A. Characterization of Data Mining Technologies and Processes [Текст] / K. A. Parsaye // The Journal of Data Warehousing. – 1998. – № 1. – Р. 12–24.

6. Tukey J. W. Exploratory Data Analysis [Текст] / J.W.Tukey . – PA: Addison-Wesley, 1977. – 689 p.

7. Гурко А. Г. Повышение точности оценки состояния динамичных объектов комплексом MATLAB-Arduino при проектировании кибер-физических систем А. Г. Гурко, А.П. Плахтеев, П. А. Плахтеев // Радиоэлектроника, информатика, управление. – 2016 – №1. – C. 84–91. DOI 10.15588/1607-3274-2016-1-10.

8. Нефьодов Л. И. Обобщенная модель системного синтеза автоматической трансмиссии / Л. И. Нефьодов, А. А. Осьмачко, Восточно-Европейский журнал передовых технологий 6/4 (42) 2009 г., с. 10–14.