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Анотація. Запропоновано багаторівневу систему виявлення мін за допомогою безпілотного 

літального апарата (БПЛА) зі швидкою детекцією YOLOv8n на наземній станції та хмарній 

семантичній верифікації ChatGPT-4o Vision із проміжною впевненістю. Відео 1080p з 

Raspberry Pi синхронізується з телеметрією Pixhawk 6C й геоприв‟язується, після чого кон-

тейнеризація та повне логування гарантують відтворювання. Запропонована схема прийнят-

тя рішень дозволяє зберігати високу повноту на етапі YOLOv8 і скорочувати хибні спрацьову-

вання завдяки  семантичній  перевірці  проблемних   ділянок зображення в хмарі без істотного 

впливу на середню затримку та смугу каналу.  
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Вступ 

Мінна небезпека на великих площах пот-

ребує інструментів швидкого та безпечного 

обстеження, здатних працювати в різномані-

тних умовах фону, освітлення та погоди. 

Класичні металодетектори надійні для маси-

вної мети, однак малі протипіхотні міни (зо-

крема ПФМ-1) часто залишаються поза чут-

ливістю або подають неоднозначні сигнали 

за нестабільних траєкторій БПЛА й частко-

вих оклюзій.  

Комп’ютерний зір з безпілотних плат-

форм довів ефективність у візуальному вияв-

ленні, але вимагає архітектурних рішень, що 

збалансують точність, затримку, смугу кана-

лу й енергоспоживання та зможуть забезпе-

чити  відтворюваність і прозору трасованість 

інформації.  

У попередніх  дослідженнях  аналізували  

успішні кейси використання глибокого на-

вчання для оптичної детекції мін і багатосен-

сорні підходи з інтеграцією магнітометрії й 

оптики.  

Водночас у доступній  літературі майже 

не  відтворювали наскрізні рішення, які по-

єднують узгоджене за часом захоплення ві-

део з БПЛА та телеметрії, швидку детекцію 

на наземному рівні з просторово-часовою 

консистентністю, ескалаційну хмарну вери-

фікацію «важкими» моделями для супереч-

ливих  випадківі формалізоване злиття аналі-

зу  в єдину інтегральну ймовірність рішення 

з можливістю аудиту.  

Ця прогалина особливо відчутна для ви-

падків малорозмірної  мети  на складному 

фоні, де одинична модальність часто має 

компроміси між повнотою та точністю (recall 

та precision). 

У цій роботі запропоновано багаторівневу 

архітектуру edge→ground→cloud, що чітко 

розподіляє функції  між рівнями й експлуа-

тує їхні переваги. На edge реалізовано безпе-

рервне захоплення і гарантовану доставку 

сегментів відео з уніфікованими часовими 

мітками; на ground – основне інтелектуальне 

оброблення  з використанням YOLOv8 і гео-

прив’язкою, яка забезпечує просторово-

часову консистентність і близький до реаль-

ного часу аналіз; на cloud – селективну сема-

нтичну верифікацію  візуально-мовними 

моделями VLM (ChatGPT-4o Vision та Gemi-

ni 2.5) з проміжною впевненістю, що знижує 

хибні спрацьовування без істотного впливу 

на середню затримку. Архітектура підтримує 

повну відтворюваність через контейнериза-

цію модулів і журналювання версій моделей, 

порогів, метаданих і контрольних сум. 

Основними науковими внесками роботи є 

формалізована ієрархія оброблення  із прозо-

рою часовою узгодженістю, узагальнена мо-

дель Pfinal для злиття аналізу  детектора  

та VLM і відтворювана експериментальна 

методологія з роботоздатністю в польових 

умовах. 

 Отримані результати демонструють, що 

запропонована система досягає високої якос-
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ті в однокласовому  визначені  ПФМ-1 і 

створює основу для подальшого розширен-

ня – до багатокласових сценаріїв і інтеграції 

фізичного каналу металодетектора у форма-

льну модель злиття. 

 

Аналіз публікацій 

Нещодавно опубліковані  роботи демон-

струють ефективність глибокого навчання 

для оптичного виявлення наземних мін. Зок-

рема Emanuele Vivoli та співавтори проаналі-

зували  виявлення поверхневих мін (PFM-1, 

PMA-2) із використанням YOLOv8, вбудова-

ного в роботизовану платформу, зазначивши 

високу повноту та придатність до практично-

го використання [1].  

Окремий напрям – моделювання чинників 

середовища.  Зазначено,  що рослинний пок-

рив і часткові перекриття істотно впливають 

на чутливість YOLO-детекторів з БПЛА. 

Автори пропонують визначати точність як 

функцію оклюзії, отриманої з фотограммет-

ричних моделей місцевості. Це доводить  

необхідність урахування умов зйомки в 

польових експериментах [2].  

У суміжній гілці активно досліджують ін-

теграцію оптичних і магнітометричних да-

них, застосовуючи байєсівські підходи, тео-

рію Демпстера-Шефера, фільтри Калмана 

тощо. 

Це доводить  перспективність багатосен-

сорних систем та дозволяє здійснити процес 

подальшого об’єднання з металодетекто-

рами.  

У публікації “Optical and Magnetometric 

Data Integration for Landmine Detection  

with UAV” [3] автори описують побудову 

«магнітних карт» та використання CNN/гли-

бокого навчання для розпізнавання мін за 

магнітометричними зображеннями, зазнача-

ючи, що поєднання сигналів різного  фізич-

ного  походження збільшує  ефективність 

виявлення. 

З огляду на це  наша робота відрізняєть-

ся мультирівневим аналізом відеоданих (по-

передній відбір/детекція YOLOv8 [4] та по-

дальша верифікація на рівні VLM (ChatGPT/ 

Gemma) у хмарі), що дозволяє зменшити 

хибні напрацювання та збільшити рівень  

довіри  до рішень завдяки  ескалації між рів-

нями. 

Література доводить  ефективність оптич-

ної детекції YOLOv8 [5] та  багатосенсорної 

інтеграції (оптика+магнітометрія). Водночас 

невелика кількість  робіт формалізує  ієрар-

хічну (edge→ground→cloud) архітектуру з 

узгодженими часовими мітками та прозорою 

трасованістю. 

Запропонований нами підхід вирішує це 

завдання: він поєднує швидку детекцію на 

відео (YOLOv8) з подальшою семантичною 

верифікацією (ChatGPT/Gemma) у хмарі та 

готує підґрунтя для подальшого злиття з ме-

талодетектором. 

 

Мета та постановка завдання  

Мета дослідження – розробити та експе-

риментально верифікувати модуль комп’ю-

терного зору для виявлення протипіхотних 

мін з борту БПЛА. Для її досягнення потріб-

но спроєктувати відтворюваний конвеєр збо-

ру, геоприв’язки та оброблення  відео, сфор-

мувати й розмітити репрезентативний дата-

сет для навчання та налаштування моделі 

YOLOv8n. Передбачається аналіз  точності 

та продуктивності системи в польових умо-

вах, а також окреслення інтеграції з метало-

детектором. 

 

Архітектура системи.Запропонована си-

стема реалізує ієрархію оброблення  

edge→ground→cloud, оптимізуючи вектор 

показників «точність – затримка – смуга – 

енергія – відтворюваність».  

На (рис. 1) edge (борт БпЛА) здійснює  

безперервне захоплення та кільцеву буфери-

зацію відео з часовими мітками, синхронізо-

ваними з навігаційним трактом (GPS/INS). 

Цей рівень працює за принципом проміжно-

го зберігання та перенаправлення  із гаранто-

ваною доставкою. 
 

 
 

Рис. 1. Зображення комплексу виявлення  

мін у польоті 
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Сегменти відео передаються на наземну 

станцію тоді, коли це дозволяє канал, а в разі 

перебоїв зв’язку накопичуються локально й 

відновлюються без втрати інформації. Такий  

процес  зменшує вимоги до миттєвої пропус-

кної здатності та енергоспоживання борта, 

але зберігає повну трасованість інформації: 

кожен кадр має уніфіковану часову мітку, що 

в подальшому забезпечує коректну геоп-

рив’язку й аудит.  

Основне інтелектуальне оброблення здій-

снюється  на ground-рівні. Тут формалізова-

но центральну новизну, а саме поділ функцій 

між швидкою візуальною детекцією та відк-

ладеною семантичною верифікацією.  

Відеокадри, узгоджені з телеметрією, по-

даються на детектор YOLOv8 [6], який оці-

нює ймовірність належності об’єкта до класу 

мін. Вихід YOLOv8 інтерпретується як рі-

вень sY і є першим рівнем прийняття рішень з 

низькою латентністю.  

Для підвищення стійкості до оклюзій, 

змін масштабу та умов фону передбачено 

часове об’єднання детекцій (агрегація sY у 

вікнах кадрів уздовж траєкторії) та Post-hoc 

геоприв’язку: кожне спрацювання отримує 

координати WGS-84 і висоту, що дає можли-

вість здійснювати  просторовий аналіз та 

повторювані вимірювання в тих самих точ-

ках. Таким чином, ground-рівень поєднує 

«субсекундну» інференс-логіку з просторо-

во-часовою консистентністю. 

Рівень cloud реалізує ескалаційний шар 

для випадків невизначеності. На ньому за-

стосовуються «важкі» моделі семантичної 

верифікації (VLM): ChatGPT-4o Vision або 

Gemma-3 Vision, які зображенням підозрілих 

ділянок визначають  незалежний рівень sC 

(semantic confidence). 

Архітектурно хмара інтегрована як сервіс 

валідації з пріоритетом «on demand»: до неї 

спрямовуються лише ті події, для яких 

ground-рівень формує проміжну впевненість 

(зона невизначеності).  

Така ескалація зберігає пропускну здат-

ність і контролює затримку, де більшість 

рішень приймається локально, а хмара під'є-

днується точково, коли очікувана користь від 

семантичного сигналу перевищує вартість 

виклику. 

Функціональна взаємодія рівнів описуєть-

ся узагальненим часовим конвеєром із явни-

ми бюджетами, а загальна затримка визнача-

ється  як 

 

Ltot = Lcap + Ltx +LYOLO + Lfuse + Lcloud..         (1)  

Внесок Lcloud активується лише для еска-

лаційних випадків у режимі роботи “AND”, 

завдяки цьому середня Ltot нижча за  монолі-

тні хмарні схеми, а вимоги до каналу опису-

ються як Bavg≪Braw завдяки  сегментації і 

вибірковим відправкам ROI (Region of 

Interest).  

Якщо використовують  сценарій “OR”,  до 

хмари надсилаються всі можливі кадри, що 

збільшує вірогідність виявлення. Архітекту-

ра передбачає відмовостійкість – у разі  втра-

ти мережі рішення приймаються на ground-

рівні, а хмарна верифікація здійснюється 

пакетно після відновлення зв’язку без дегра-

дації трасованості. 

На рівні даних система забезпечує відтво-

рюваність і аудит. Усі модулі використову-

ються як контейнеризовані компоненти з 

фіксованими версіями моделей і залежнос-

тей. Метадані експериментів (хеші відеосег-

ментів, конфігурації порогів, ревізії ваг дете-

кторів) логуються в машинному журналі. 

Єдина вісь часу будується з використанням 

GPS-часу автопілота та NTP-синхронізації 

борту.  

Під час злиття інформації застосовується 

інтерполяційне зіставлення «кадр ↔ телеме-

трія» з контролем дрейфу. Це гарантує, що 

геоприв’язані детекції можуть бути відтво-

рені, перевірені та повторно проаналізовані 

під іншими порогами або моделями без по-

вторного польоту. 

Ключовим науковим елементом є ескала-

ційне правило рішень, яке пов’язує архітек-

туру з формальною моделлю. На ground- 

рівні формується інтегральна впевненість 

Plocal = g(sY), після чого події з Plocal∈[θℓ,θu] 

передаються до  хмари для семантичної ве-

рифікації; основою для фінального рішення 

є Pfinal = f(sY,sC,…) із порогом Θ, де f(⋅) – калі-

брована агрегуюча функція (наприклад, з 

урахуванням Platt/temperature-scaling для 

зведення значень до єдиної ймовірнісної 

шкали).  

Така конструкція узагальнює OR/AND і k-

із-n-правила як окремі випадки порогування 

й демонструє, що багаторівнева організація 

дозволяє одночасно знизити хибні спрацьо-

вування та зберегти високу. 

Практична схема цього підходу подана на 

рис. 2: відео, інформація з металодетектора 

та GPS з борта надходять на наземну стан-

цію, де відбуваються злиття та детекція 

YOLOv8. 
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Рис. 2. Схема багаторівневого підходу оброблен-

ня відеоданих 

 

Невизначені випадки ескалюються у хма-

ри з обробленням ChatGPT/Gemma, а резуль-

тати консолідуються в модулі аналізу та ві-

зуалізації. Саме таке розмежування функцій 

між рівнями забезпечує керований компроміс 

між точністю, затримкою та смугою, а також 

гарантує відтворюваність і аудит усіх рішень 

завдяки єдиній часовій шкалі, контейнериза-

ції і повному журналюванню експериментів. 

 

Методологія оброблення. Вхідними да-

ними є відеопотік з борта БПЛА у форматі 

MPEG-4 (1920×1080) із уніфікованими часо-

вими мітками, синхронізованими з телемет-

рією автопілота (GPS/курс/висота). На назе-

мній станції відео декодується в реальному 

часі або пакетно.  

Застосовується легка стабілізація від мік-

ровібрацій через аналіз  міжкадрового зсуву. 

Детектор комп’ютерного зору реалізовано на 

основі Ultralytics YOLOv8n, створеної за 

попередньо розміченими [7] прикладами мін 

малого розміру (деталі складу датасету, про-

токол анотування та розподіл train/val/test 

наведено у [8]).  

Під час інференсу використовується паку-

вання кадрів для зменшення накладних ви-

трат препроцесингу, а постпроцесинг здійс-

нюється стандартною NMS (Non-Maximum 

Suppression), що прибирає дублікати вияв-

лень із каліброваними порогами score/IoU, 

що було вибрані за валідаційними PR-

кривими.  

Вихід YOLOv8 інтерпретується як безпе-

рервний рівень sY∈[0,1] для кожної гіпотези з 

її просторовими координатами (x1, y1, x2, y2). 

Щоб зменшити локальні флуктуації впев-

неності та чутливість до оклюзій, результати 

YOLOv8 (рис. 3) агрегуються в часі. Гіпотези 

з подібними  положеннями на сусідніх кад-

рах об’єднуються в треки з експоненційним 

згладжуванням sY, а до кожної події прив’я-

зується телеметрія через лінійну інтерполя-

цію за часовими мітками.  

На цьому етапі формується список ROI-

фрагментів з обрізаними зображеннями 

об’єктів і метаданими (час, Lat/Lon/Alt, 

курс, sY). Для рішень «очевидно позитивних» 

та «очевидно негативних» застосовуються 

два пороги θlow < θhigh: якщо sY ≥ θhigh, спрацю-

вання фіксується локально без ескалації; 

якщо sY ≤ θlow, відкидається. Події «сірої зо-

ни» sY∈(θlow,θhigh) передаються до хмари для 

семантичної верифікації, що мінімізує як 

середню затримку, так і обсяг переданої ін-

формації. 

 

 
 

Рис. 3. Зображення частини обробленого відео з 

анотацією 
 

Семантична верифікація здійснюється в 

хмарі за допомогою VLM із зоровими мож-

ливостями (ChatGPT-4o Vision API) [9]. 

До запиту передаються ROI вирізка та служ-

бові метадані (час/координати). Для стиму-

лювання бінарної відповіді використовується 

короткий інструктивний промпт: “You are a 

land mine detector. Say „YES‟ if you can see any 

suspicion that the photo shows an explosive 

object. Shortly describe its type if you 

can”(укр.: «Ви  детектор мін. Скажіть “YES”, 

якщо бачите будь-які підозри, що на фото 

зображено вибухонебезпечний предмет. Ко-

ротко опишіть його тип, якщо зможете»). 

Модель повертає перший токен YES/NO та 
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короткий опис. Для перетворення текстової 

відповіді в числову семантичну впевне-

ність sC використано два режими. У швидко-

му режимі задається детермінований мапінг: 

YES→ sC = 1, NO→ sC = 0, що адекватно 

здійснює функцію жорсткого фільтра на 

сумнівних кейсах. У розширеному режимі 

оцінюється «м’яка» впевненість через ансам-

блювання.  

Модель аналізується  T разів з нейтраль-

ними парафразами промпта та фіксованими 

обмеженнями формату. sC  визначається як 

частка відповідей YES і надалі калібрується 

логістичною регресією (Platt/temperature-

scaling) за валідаційною вибіркою, щоб звес-

ти sC до імовірнісної шкали. Обидва режими 

допускають автоматичний парсинг та журна-

лювання відповіді разом із зображенням ROI 

і геоприв’язкою. 

Фінальний розв’язок  для кожної події 

приймається як порогування інтегральної 

імовірності Pfinal, яка для дворівневої схеми 

задається агрегуючою функцією Pfinal = f(sY,sC). 

На практиці використовувалося каліброване 

зважування  
 

Pfinal = λYsY+λCsC  ,                   (2)     
 

якщо  λY + λC = 1. 

В експериментах вагові коефіцієнти було 

зафіксовано як λY = 0.7 та λC = 0.3. Більша 

вага λY на ознаці наявності об’єкта підсилює 

чутливість до виявлення мін, тоді як менша 

вага λC для впевненості класифікації є доста-

тньою в умовах однокласового  визначення, 

забезпечуючи збалансований компроміс між 

чутливістю та точністю. Така конструкція 

узагальнює класичні правила, де OR-логіка 

дорівнює низькому порогу Θ або високій 

вазі λC для YES-вердикту чат-моделі; AND-

логіка – високому Θ або вимозі одночасно sY 

≥ θY і sC = 1. Після прийняття рішення подія 

маркується як «детекція міни» або «відхиле-

но», а всі проміжні значення (sY, sC, Pfinal) та 

версії моделей зберігаються в журналі для 

аудиту й повторюваності. 

Сумарний часовий бюджет конвеєра мож-

на записати так: 

 

Ltot = Ldecode + Lstabilize + LYOLO+ 

Lagg + Iesc⋅(Lupl + LVLM),                    (3) 

 

де Iesc – індикатор ескалації у хмару. Оскіль-

ки лише події  «сірої зони» спрямовуються 

на верифікацію, середня Ltot залишається 

наближеною до латентності YOLOv8, а про-

пускна здатність каналу визначається кількі-

стю ROI та їхнім  розміром, а не сирим віде-

опотоком. Такий режим забезпечує керова-

ний компроміс між чутливістю та хибними 

спрацьовуваннями: швидка візуальна детек-

ція формує високий recall, а семантична пе-

ревірка відсікає типові помилки на «схожих» 

об’єктах (листя, каміння, сміття), підвищую-

чи precision без істотної втрати пропускної 

здатності або збільшення часу затримки.  

Усі кроки реалізовані в контейнерах з фіксо-

ваними версіями залежностей; часові мітки, 

конфігурації порогів і ваг-агрегування ло-

гуються разом із контрольними сумами ві-

деосегментів, що гарантує повну відтворю-

ваність і можливість повторного аналізу 

під різними θlow, θhigh, Θ, λ без повторних 

польотів. 

 

Експерименти та метрики. Польові ви-

пробування здійснювалися на ділянках із 

розкладеними муляжами ПФМ-1. БПЛА 

здійснював низьковисотні проходи (≈2–3 м) 

над hetero-фоном (трава/ґрунт/тінь). Відео 

1920×1080 (MPEG-4) записувалося на Rasp-

berry Pi 4B [10] та передавалося на польовий 

ПК за допомогою  Wi-Fi/SSH-сегментів з 

гарантованим відновленням; телеметрія 

Pixhawk 6C [11] логувалася паралельно. Об-

роблення  здійснювалося покадрово конвеє-

ром «стабілізація/препроцесинг → інференс 

YOLOv8n → NMS → геоприв’язка → жур-

налювання». Кадри вирівнювалися від мік-

ровібрацій, масштабувалися з letterbox-

паддингом і нормалізувалися. Детекції отри-

мували часову мітку та координати (інтерпо-

ляція за ULog/MAVLink) [12]. Для визначен-

ня якості застосовано стандартні метрики 

Precision, Recall, mAP@0.5 і mAP@0.5:0.95, 

для продуктивності – латентність за  стадія-

ми (preprocess/inference/postprocess на кадр) і 

ефективний FPS. Додатково фіксувалися 

показники операційного рівня для двоступе-

невої схеми. Частка ROI, що ескалюються до  

хмари (rate of escalation), середній час запиту 

до VLM та додаткова передана смуга (на 

ROI-вирізках, а не на опрацьованому  відео). 

Усі події логувалися в машинночитаному 

форматі (frame_id, timestamp, bbox, conf, гео-

прив’язка, версії моделей, конфігурації поро-

гів), що забезпечує повну відтворюваність 

експериментів. 

Налаштування середовища дорівнювали 

таким  версіям: Ultralytics 8.3.178, Python 

3.9.6, torch-2.8.0 із апаратним прискоренням 

MPS (Apple M3 Pro); підсумкова модель – 

YOLOv8n (fused), 72 шари, 3 005 843  пара-
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метри, 8.1 GFLOPs. На валідаційному підна-

борі 53 зображення / 23 інстанси отримано: 

Precision = 0.957, Recall = 1.000, mAP@0.5 = 

0.981, mAP@0.5:0.95 = 0.688. Час на кадр ста-

новив ≈ 27.7 мс: 0.5 мс (preprocess) + 21.2 мс 

(inference) + 6.0 мс (postprocess), що дорів-

нює ≈ 36 FPS; внесок стадій у затримку –

~1.8% / 76.5 % / 21.7 %. Такі значення свід-

чать про високу якість в однокласовій поста-

новці та вказують на очікувану чутливість до 

масштабу/ракурсу й часткових оклюзій (ниж 

чий mAP@0.5:0.95).   

Дослідницьку верифікацію в хмарі здійс-

нювали  для «сірої зони» впевненості детек-

тора. ROI з проміжними значеннями скору 

передавалися до ChatGPT-4o Vision із корот-

ким інструктивним промптом: “You are a 

land mine detector. Say „YES‟ if you can see any 

suspicion that the photo shows an explosive 

object. Shortly describe its type if you can”. 
 

 
 

Рис. 4. Графік спрацювань ChatGPT-4o Vision під 

час аналізу зображень 

 

Відповідь аналізувалась до семантичної 

впевненості sC (режим «жорсткий» YES/NO 

або «м’який» через ансамблювання запитів з 

подальшим Platt/temperature-scaling) На ри-

сунку 4 подано спрацювання моделі, де 1 – 

це YES, а 0 це – NO. Фінальна імовір-

ність Pfinal формувалася як калібрована агре-

гація Pfinal=λYsY+λCsC з підбором λ і межі Θ за 

валідаційними кривими PR під обмеженням 

FAR. Для відтворювання зберігалися всі пер-

винні відповіді VLM і контрольні суми пере-

даних ROI. Якісний аналіз  ефекту верифіка-

ції наводили як  порівняння PR/ROC-кривих 

«YOLO-baseline» проти «YOLO+ChatGPT» 

та зміни F1 за фіксованого FAR, а числова 

бенчмаркінг-програма розширюється в ме-

жах  подальших робіт, однак уже зараз жур-

налювання демонструє  керовану ціну еска-

лації, де додаткова латентність і смуга зале-

жать від частки спірних ROI, тоді як біль-

шість рішень приймається локально на назе-

мній станції. 

Сукупно отримані результати доводять  

спроможність системи до близького до реа-

льного часу післяпольотного аналізу на 

польовому ноутбуці та демонструють, що 

двоступенева схема дозволяє зберегти висо-

кий recall детектора і водночас підвищити 

рівень довіри до рішень завдяки семантичній 

перевірці складних випадків. Відтворюва-

ність забезпечено контейнеризацією модулів, 

єдиною часовою шкалою інформації і пов-

ним журналюванням, що дозволяє повторно 

здійснити  експерименти та перевірити  ре-

зультати під іншими межами  без повторних 

польотів. 

 

Висновки 

У роботі подано  багаторівневу систему 

виявлення протипіхотних мін з БПЛА, побу-

довану за архітектурою edge→ground→cloud 

із чітким розподілом функцій та часовою 

узгодженістю інформації. На наземному рів-

ні реалізовано швидку візуальну детекцію 

(YOLOv8), а на хмарному – селективну се-

мантичну верифікацію  (ChatGPT-4o Vision) 

для випадків невизначеності. Така ескалацій-

на логіка дозволяє досягти кращого балансу 

«точність – затримка – смуга», як  порівняти  

з однорівневими схемами, і водночас зберіг-

ти відтворюваність завдяки контейнеризації, 

єдиній часовій шкалі та повному журналю-

ванню. 

Польові випробування на муляжах 

 ПФМ-1 довели  практичну придатність під-

ходу. Базовий детектор досяг показників 

Precision = 0.957, Recall = 1.000, mAP@0.5 = 

0.981, mAP@0.5:0.95 = 0.688, які  довели  

ефективну продуктивність ≈36 FPS на польо-

вому ноутбуці. Запропонована двоступенева 

схема прийняття рішень дозволяє зберігати 

високий recall на етапі YOLOv8 [13] і скоро-

чувати хибні спрацьовування завдяки  семан-

тичній перевірці спірних ROI в хмарі без 

істотного впливу на середню затримку та 

смугу каналу. 

Наукова новизна полягає у формалізова-

ній ієрархії оброблення  з інтегрованою мо-

деллю злиття, де локальна впевненість дете-

ктора sY  поєднується із семантичною впев-

неністю sC для формування Pfinal та порогово-

го рішення. Така конструкція узагальнює 

класичні OR/AND і k-із-n-правила та демон-

струє керований компроміс між чутливістю 

та специфічністю завдяки вибірковому вико-

ристанню «важкого» семантичного сигналу. 

Обмеження роботи пов’язані з одно-

класовою постановкою та чутливістю до 
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зміни масштабу/ракурсу та часткових оклю-

зій. Подальші дослідження передбачають 

розширення до багатокласового детектора, 

приєднання  фізичного каналу металодетек-

тора до формальної моделі Pfinal, систематич-

ний бенчмаркінг PR/ROC для «YOLO vs. 

YOLO+VLM» на розширеному наборі сцен 

та оптимізацію латентності (квантовка/екс-

порт у прискорювачі). У сукупності запропо-

нована архітектура та методологія формують 

відтворювану та масштабовану основу для 

оперативного гуманітарного розмінування. 
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Multilevel approach to uav-based detection of 

anti-personnel mines using computer vision 

Abstract. Goal. Develop and validate a multilevel 

edge→ground→cloud decision pipeline for UAV-

based detection of small anti-personnel mines (PFM-

1), combining a fast visual detector with on-demand 

semantic verification. The objective is to maximize 

recall at a controlled false-alarm rate while preserv-

ing low latency, narrow bandwidth, and full tempor-

al/geospatial traceability for audit and reproducibili-

ty. Methodology. The edge (Raspberry Pi) records 

1080 p video time-aligned with Pixhawk 6C telemetry 

and forwards segments reliably (store-and-forward). 

The ground station runs Ultralytics YOLOv8n with 

frame-level inference, temporal aggregation of con-

fidences (sY), and WGS-84 georeferencing. Events 

with intermediate confidence are escalated to the 

cloud, where a vision-language model (ChatGPT-4o 

Vision) returns a semantic score sC under a con-

strained YES/NO prompt. Final decisions use cali-

brated fusion Pfinal=λYsY+λCsC  with thresholding 

(generalizing AND/OR and k-of-n rules). All modules 

are containerized; timestamps, model versions, thre-

sholds, and checksums are logged, with a unified 

GPS/NTP time axis. Field trials at ≈2–3 m altitude 

over heterogeneous backgrounds with PFM-1 mock-

ups yielded Precision 0.957, Recall 1.000, mAP@0.5 

0.981, mAP@0.5:0.95 0.688 at ≈36 FPS on a field 

laptop. Selective escalation of ROI crops reduced 

false positives with negligible added latency and 

bandwidth. Originality. We provide the first repro-

ducible end-to-end architecture that links detector 

confidence to a semantic VLM signal via an explicit 

escalation rule and probabilistic calibration 

(Platt/temperature scaling), under an auditable data 

plane. The design formalizes timing and bandwidth 

budgets, remains resilient to link loss, and unifies 

temporal alignment, georeferencing, and provenance 

via containerized modules and machine-readable 

logs. Practical value. The system enables near-real-

time post-flight analysis on commodity hardware, 

preserves high recall while suppressing clutter-

driven false alarms, and reduces operator workload. 

By transmitting only ROI crops, it lowers communi-

cation energy demands and eases deployment in 

bandwidth-constrained field settings. The methodol-

ogy supports governance and evidence through veri-

fiable logs and is readily extensible to multi-class 

detection and to fusion with a metal detector within 

the same probabilistic framework, facilitating tech-

nology transfer to humanitarian demining workflows. 

Key words: humanitarian demining; UAV; vision-

language models; wireless computer network; com-

puter vision; YOLOv8; georeferencing; multilevel 

image analysis; ChatGPT. 
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