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Анотація. У статті досліджено актуальні напрями розвитку матеріалознавства в умовах 

цифрової трансформації та сталого розвитку. Розглянуто потенціал методів штучного інте-

лекту для оптимізації досліджень і моделювання властивостей матеріалів. Проаналізовано 

перспективні шляхи інтеграції України в глобальні науково-технологічні процеси. 
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рове моделювання матеріалів, інтелектуальний аналіз даних. 

 

Вступ 

Сучасне матеріалознавство переживає гли-

боку трансформацію, зумовлену впливом 

цифрових технологій і глобальних викликів 

сталого розвитку. Нині ми перебуваємо на 

перетині двох потужних тенденцій: стрімкого 

прогресу в галузі штучного інтелекту й пере-

осмислення ролі матеріалів у новій промисло-

вій парадигмі. У контексті Індустрії 4.0 змі-

нюється не лише інструментарій дослідника, а 

й сама логіка наукового пошуку – від ізольо-

ваних експериментів до комплексних, інтег-

рованих систем, що поєднують великі дані, 

цифрове моделювання, хмарні обчислення й 

алгоритми машинного навчання [1–9]. 

Цей перехід відкриває нові можливості 

для прогнозування властивостей матеріалів, 

оптимізації їх складу й структури, а також 

прискорення циклу «від ідеї до прототипу». 

Матеріалознавство поступово перетворюєть-

ся на кіберфізичну дисципліну, де фізичні 

процеси тісно переплетені з цифровими мо-

делями й аналітичними платформами [6]. 

Для України це не лише виклик, але й стра-

тегічна можливість інтегрувати в глобальні 

науково-технологічні процеси, посилити 

власний дослідницький потенціал і сприяти 

розвитку інноваційної економіки. 

 

Аналіз публікацій 

Вивчення наукових публікацій свідчить 

про стрімке зростання інтересу до впрова-

дження штучного інтелекту в матеріалознав-

стві, особливо після 2018 р., що збігається з 

активізацією глобальних процесів цифрові-

зації [2, 8]. Провідні дослідницькі центри з 

різних країн дедалі частіше зосереджуються 

на використанні алгоритмів машинного на-

вчання для прогнозування фізико-хімічних 

властивостей матеріалів, оптимізації їх скла-

ду й структури, а також автоматизованого 

дизайну нових функціональних матеріалів [5, 

8, 10]. Значна частина досліджень спрямова-

на на створення енергоефективних і екологі-

чно безпечних рішень, що узгоджується з 

цілями сталого розвитку й переходом до 

циркулярної економіки [11, 12]. Цифрове 

моделювання, хмарні обчислення й аналіз 

великих даних стали ключовими інструмен-

тами сучасного матеріалознавства. Така тра-

нсформація відкриває нові перспективи для 

міждисциплінарної кооперації, прискорення 

інноваційного циклу й формування кіберфі-

зичних систем у дослідницькому середовищі. 

[1, 3–9]. 

 

Мета й постановка завдання 

Метою дослідження є виявлення актуаль-

них напрямів розвитку матеріалознавства в 

умовах цифрової трансформації з особливою 

увагою до застосування методів штучного 

інтелекту для вдосконалення наукових під-

ходів, моделювання властивостей матеріалів 

і підтримки принципів сталого розвитку. 

Для реалізації окресленоъ мети було сфо-

рмовано завдання дослідження, що поляга-

ють у виявленні ключових напрямів упрова-

дження інтелектуальних технологій у матері-

алознавстві та оцінюванні перспектив циф-

рової трансформації в контексті сталого роз-

витку й міжнародної інтеграції України. 

 

Виклад основного матеріалу 

Як показав аналіз наукових статей, у су-

часному матеріалознавстві змінюється сама 

логіка дослідницького процесу. Традиційна 

послідовність «гіпотеза → експеримент → 

аналіз» поступається місцем інтерактивним і 

адаптивним моделям, де цифрове моделю-

вання, оброблення інформації та віртуальний 

скринінг матеріалів відіграють роль старто-

вих етапів [11]. Зростає роль відкритих еко-
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систем знань, які забезпечують доступ до 

структурних баз, алгоритмів і аналітичних 

платформ, що сприяє колективному прогресу 

[3, 7, 11]. 

Варто наголосити, що цифрові технології 

не замінюють дослідника, а доповнюють 

його інструментарій. Ефективне створення 

нових матеріалів можливе лише за умови 

поєднання глибокої предметної експертизи із 

сучасними засобами аналізу. У цьому кон-

тексті методи машинного й глибинного на-

вчання є ключовими елементами нової дос-

лідницької парадигми, орієнтованої на швид-

ке, цільове й ресурсоефективне проєктування 

матеріалів (рис. 1). 

 

 
 

Рис. 1. Упровадження методів ШІ в матеріалоз-

навстві 

 

Методи машинного навчання (ML) вже 

активно застосовуються в матеріалознавстві 

для прогнозування таких фізико-хімічних 

властивостей матеріалів: електропровідність, 

теплопровідність, міцність, корозійна стій-

кість тощо. Наприклад, у роботі [13] викори-

стано нейронні мережі для передбачення 

електронної структури матеріалів на основі 

кристалографічних даних, що дало змогу 

значно скоротити тривалість часу моделю-

вання. 

У межах проєкту Materials Genome Initia-

tive (США) застосовуються ML-алгоритми 

для створення баз даних властивостей мате-

ріалів і автоматизованого скринінгу нових 

сплавів.  

Зокрема методи random forest і support 

vector machines упроваджують для класифі-

кації фазових станів і визначення стабільнос-

ті нових композицій [14]. 

У сфері наноматеріалів дослідники [13] 

застосували глибинне навчання для прогно-

зування термоелектричних властивостей 

наноструктурованих матеріалів. Це допомог-

ло виявити перспективи енергоефективних 

застосувань без проведення повного експе-

риментального циклу. 

Також активно розвиваються підходи 

transfer learning і active learning, що дають 

змогу працювати з обмеженими наборами 

даних. У дослідженнях з розроблення біосу-

місних матеріалів для імплантатів ці методи 

допомогли адаптувати моделі, навчені на 

металічних сплавах, до аналізу керамічних 

структур [15]. 

Глибинне навчання (Deep Learning, DL), 

зокрема згорткові нейронні мережі (Convo-

lutional Neural Networks, CNN), демонструє 

високу ефективність у роботі з візуальними 

даними, що є особливо актуальним для ана-

лізу мікроструктури матеріалів. DL-моделі 

широко застосовуються для автоматизовано-

го оброблення зображень, отриманих за до-

помогою сканувальної електронної мікрос-

копії (SEM), трансмісійної електронної мік-

роскопії (TEM) і атомно-силової мікроскопії 

(AFM). Це дає змогу ідентифікувати дефек-

ти, пори, тріщини, а також аналізувати зер-

нисту структуру з високою точністю та по-

вторюваністю [16]. 

Завдяки здатності розпізнавати мікро-

структурні патерни, класифікувати текстури 

й фазові вкраплення DL-алгоритми істотно 

знижують потребу в ручному аналізі, підви-

щуючи об’єктивність і швидкість дослі-

джень. Установлення кореляцій типу «мікро-

структура → властивості» стає більш досту-

пним, що сприяє оптимізації технологічних 

процесів і прискоренню розроблення нових 

матеріалів. 
Перспективним напрямом є використання 

генеративних моделей, зокрема генеративних 
змагальних мереж (Generative Adversarial 
Networks, GANs) та варіаційних автоенкоде-
рів (Variational Autoencoders, VAEs) [11]. 
Ці моделі сприяють створенню синтетичних 
зображень мікроструктур, моделюванню 
еволюції структури під впливом зовнішніх 
чинників, а також прогнозуванню впливу 
змін у складі матеріалу на його кінцеві влас-
тивості. GAN-моделі вже застосовуються для 
генерації зображень наноструктурованих 
поверхонь, що дає змогу проводити віртуа-
льний скринінг нових композицій без потре-
би у фізичних експериментах. 

Отже, поєднання машинного навчання, 

глибинного навчання та генеративних підхо-
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дів не лише прискорює формування нових 

матеріалів, але й сприяє появі нової дослід-

ницької парадигми, орієнтованої на цифрову 

трансформацію матеріалознавства й інтелек-

туальне проєктування матеріалів із заданими 

властивостями [17]. 

Одним із перспективних напрямів цифро-

візації матеріалознавства є застосування ме-

тодів оброблення природної мови (Natural 

Language Processing, NLP), які відкривають 

нові можливості для автоматизованого аналі-

зу наукової літератури. Сучасні NLP-моделі 

здатні витягувати структуровану інформацію 

з тисяч публікацій, формуючи бази знань про 

методи синтезу, параметри оброблення та 

експериментальні результати. У роботі [18] 

розглянуто застосування великих мовних 

моделей (LLMs) для побудови семантичних 

карт знань у матеріалознавстві, що сприяє 

прискоренню оглядових досліджень і гене-

рації нових гіпотез. Крім того, у праці [19] 

оцінено ефективність 15 LLM-моделей роз-

в’язувати питання з матеріалознавства, де 

найвищі результати продемонстрували  

GPT-4o та Claude-3.5. 
Інтеграція NLP з іншими цифровими під-

ходами ML, DL та методами квантового мо-
делювання (зокрема теорією функціоналу 
густини, DFT і молекулярною динамікою) 
забезпечує формування гібридних дослідни-
цьких систем. У таких системах DL викорис-
товується для аналізу мікроструктурних зо-
бражень, ML – для статистичного оцінюван-
ня властивостей, а NLP – для семантичного 
узагальнення знань з літератури. Це підви-
щує точність прогнозів, адаптивність моде-
лей і ефективність дослідницького процесу. 

Віртуальні експерименти (in silico) стали 
невід’ємним складником сучасного матеріа-
лознавства, забезпечуючи масштабованість, 
швидкість і цільову спрямованість дослі-
джень. Завдяки високошвидкісним симуляці-
ям у поєднанні з методами активного на-
вчання (active learning) дослідники отриму-
ють змогу протестувати сотні тисяч гіпоте-
тичних матеріалів у комп’ютерному середо-
вищі, що дає змогу оперативно ідентифікува-
ти найбільш перспективні структури для 
подальшого синтезу. 

Інтеграція таких підходів у замкнені дос-

лідницькі цикли (closed-loop systems) відкри-

ває нові можливості для автономного науко-

вого пошуку. У межах цих систем штучний 

інтелект самостійно генерує гіпотези, переві-

ряє їх за допомогою симуляцій або експери-

ментальних показників і на основі отриманих 

результатів вдосконалює власні моделі. 

Отже, поєднання віртуальних експериме-

нтів, глибинного навчання, NLP і квантового 

моделювання формує основу нової дослідни-

цької парадигми, орієнтованої на швидке, 

адаптивне й ресурсоефективне створення 

матеріалів із заданими властивостями. Су-

часні цифрові матеріалознавчі платформи 

(рис. 2), що поєднують бази даних, інструме-

нти моделювання й алгоритми штучного 

інтелекту, формують нову інфраструктуру 

досліджень у матеріалознавстві. Ці інструме-

нти не замінюють дослідника, а розширюють 

його можливості, забезпечуючи більш гли-

боку аналітику, вищу точність прогнозів і 

стратегічну перевагу в умовах глобальної 

конкуренції. 

 

 
 

Рис. 2. Цифрові матеріалознавчі платформи 

 

У контексті цифрової трансформації ма-

теріалознавства особливу роль відіграють 

відкриті та комерційні платформи, що забез-

печують доступ до великих масивів структу-

рованих даних, інструментів моделювання й 

засобів інтеграції з алгоритмами штучного 

інтелекту. Однією з найвпливовіших у цій 

сфері є Materials Project [1], створена в США 

на базі Національної лабораторії Лоуренса в 

Берклі. Платформа функціонує як відкритий 

репозиторій матеріалознавчої інформації, що 

охоплює понад 200 тис. матеріалів, для яких 

розраховано електронні, механічні, магнітні 

та термодинамічні властивості з використан-

ням методів Density Functional Theory (DFT) 

[11]. 
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Materials Project [11] надає дослідникам 

широкий набір інструментів, зокрема для 

моделювання кристалічних структур, побу-

дови фазових діаграм, аналізу стабільності 

фаз, оцінювання електронної провідності та 

прогнозування реакційної енергії. Інтерфейс 

платформи допомагає здійснювати пошук за 

хімічним складом, просторовою групою, 

енергетичними критеріями та іншими пара-

метрами, що значно спрощує навігацію в 

складному багатовимірному просторі матері-

алів. 

Окремо важливо наголосити на можливо-

сті інтеграції платформи з власними програ-

мними рішеннями за допомогою Application 

Programming Interface (API) [11], що відкри-

ває шлях до автоматизованого скринінгу, 

побудови ML-моделей і реалізації замкнених 

дослідницьких циклів. Materials Project ак-

тивно використовується в академічних і про-

мислових дослідженнях, зокрема з метою 

прискореного розроблення катодних матері-

алів для літій-іонних батарей, де віртуальний 

скринінг дав змогу ідентифікувати перспек-

тивні композиції з високою енергетичною 

щільністю та термодинамічною стабільністю. 

Отже, Materials Project є не лише джерелом 

даних, а й інструментом стратегічного пла-

нування досліджень, який сприяє поєднанню 

теоретичних розрахунків, машинного на-

вчання та експериментальної верифікації в 

єдиному цифровому середовищі. 

У межах європейських ініціатив цифрової 

трансформації матеріалознавства особливе 

місце посідає платформа NOMAD Repository 

(Novel Materials Discovery) [3, 4]. Вона спря-

мована на створення відкритої, стандартизо-

ваної та масштабованої інфраструктури для 

збереження, обміну й повторного викорис-

тання матеріалознавчої інформації. Основою 

платформи є принципи FAIR (Findable, 

Accessible, Interoperable, Reusable), що забез-

печують прозорість, доступність і довгостро-

кову цінність наукової інформації [7]. 

Платформа NOMAD обробляє інформа-

цію з численних джерел – від електронно-

структурних розрахунків до експеримента-

льних результатів – і перетворює їх у єдиний 

формат із багатими метаданими, що допома-

гає здійснювати пошук, фільтрацію та порів-

няння між різними наборами. Платформа 

підтримує широкий спектр симуляційних 

кодів (VASP, Quantum ESPRESSO, GPAW, 

ABINIT тощо) та забезпечує автоматичне 

вилучення параметрів, структур, енергетич-

них і термодинамічних властивостей. 

Особливістю платформи NOMAD є мож-

ливість локального розгортання через систе-

му NOMAD Oasis, яка допомагає дослідни-

цьким групам створювати власні архіви, ін-

тегрувати внутрішні джерела інформації та 

запускати власні аналітичні інструменти. 

Такий підхід забезпечує гнучкість і контроль 

над інформацією, водночас зберігаючи сумі-

сність із глобальним репозиторієм. Крім то-

го, платформа NOMAD підтримує програмну 

інтеграцію через API, зокрема стандарти 

OPTIMADE та DCAT, що сприяє автомати-

зації доступу до інформації та її використан-

ню в ML-моделях і цифрових лабораторіях. 

Автори роботи [4] описують платформу 

NOMAD як розподілену вебсистему для 

управління матеріалознавчими даними, яка 

підтримує довгострокове архівування, приз-

начення DOI, приватну модерацію та публі-

кацію з ембарго. Це робить NOMAD не лише 

технічним інструментом, але й елементом 

нової культури відкритої науки, де інформа-

ція стає повноцінним науковим результатом. 

Необхідно зауважити, що NOMAD Repo-

sitory є стратегічним ресурсом для дослідни-

ків, які прагнуть забезпечити відтворюва-

ність, відкритість і масштабованість своїх 

матеріалознавчих досліджень, інтегруючи їх 

у глобальну цифрову екосистему. 
У контексті цифрової трансформації при-

кладного матеріалознавства особливу роль 
відіграють комерційні платформи, орієнто-
вані на промислові R&D-завдання. Однією з 
найвідоміших у цій категорії є Citrine Infor-
matic – інформатична екосистема, що поєд-
нує машинне навчання, хімічну експертизу 
та інтерпретовану аналітику для прискорено-
го проєктування матеріалів [5]. Платформа 
була заснована 2013 р. й набула широкого 
застосування в сферах полімерів, сплавів, 
акумуляторних матеріалів, покриттів і ком-
позитів. 

Ключовою особливістю Citrine є викорис-
тання інтерпретованих ML-моделей, які ге-
нерують прогнози й пояснюють логіку при-
йнятих рішень. Це забезпечує прозорість 
аналітики, що є критично важливим у про-
мислових умовах, де довіра до моделі має 
практичне значення. Платформа оптимізова-
на для роботи з обмеженими наборами да-
них, що особливо актуально для експеримен-
тальних досліджень, де повні масиви часто 
не доступні. Завдяки хімічно обізнаним алго-
ритмам Citrine здатна витягувати максима-
льну інформацію навіть із фрагментарних 
даних, забезпечуючи ефективне прогнозу-
вання властивостей і складу матеріалів. 
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Платформа Citrine підтримує графічний 

вебінтерфейс для інженерів і гнучкий Python-

клієнт для автоматизації робочих процесів, 

що забезпечує доступність як для науковців, 

так і для дата-аналітиків. Водночас Citrine не 

претендує на інтелектуальну власність кори-

стувачів, надаючи повний контроль над ін-

формацією та відкриту архітектуру для інте-

грації з внутрішніми системами. Такий підхід 

сприяє довгостроковому впровадженню пла-

тформи Citrine в корпоративні R&D-

стратегії, зберігаючи конфіденційність і гну-

чкість. 

Зазначимо, що поєднання відкритих науко-

вих платформ і комерційних рішень створює 

багаторівневу цифрову екосистему, що підт-

римує як фундаментальні дослідження, так і 

прикладні розробки, сприяючи прискоренню 

інноваційного циклу в матеріалознавстві. 

Варто наголосити, що формування єдино-

го цифрового простору в матеріалознавстві 

не є лише технічним процесом – це трансфо-

рмація наукової культури, яка передбачає 

нові форми взаємодії, спільного управління 

знаннями та колективного прийняття рішень. 

У межах цієї парадигми матеріальна інфор-

матика постає як міждисциплінарна галузь, 

що поєднує фізику конденсованого стану 

речовини, хімію, обчислювальні науки, ма-

шинне навчання й наукову комунікацію. 
Цифрові платформи, такі як Materials 

Project, NOMAD Repository та Citrine 
Informatics, забезпечують доступ до інфор-
мації та задають нові стандарти дослідниць-
кої практики в матеріалознавстві – від авто-
матизованого скринінгу до пояснюваного 
прогнозування властивостей. Їх упроваджен-
ня сприяє переходу від інтуїтивного пошуку 
до системного, керованого даними проєкту-
вання матеріалів, що особливо важливо в 
умовах глобальних викликів – енергетичних, 
екологічних і технологічних. 

Крім цього, для повноцінного розкриття 
потенціалу таких платформ необхідно 
розв’язати низку методологічних і етичних 
проблем. Зокрема актуальним залишається 
питання інтерпретованості моделей, особли-
во в критичних галузях, зокрема й матеріало-
знавстві, де помилки можуть мати значні 
наслідки. Розвиток інтерпретованого ШІ, 
стандартизація метаданих, верифікація ре-
зультатів та інтеграція з експериментальни-
ми лабораторіями – це ключові напрями, що 
мають бути підтримані на рівні міжнародної 
наукової політики. 

У зв’язку з цим важливо забезпечити ін-

клюзивність цифрової інфраструктури, щоб 

доступ до потужних обчислювальних ресур-

сів, навчальних моделей і баз даних був відк-

ритим для дослідників з різних регіонів сві-

ту, разом з тими, що працюють у складних 

економічних умовах. Такий підхід сприяє 

науковій справедливості й розширює спектр 

ідей, підходів і рішень, що формуються в 

глобальному науковому дискурсі. 

Як наслідок, цифрові екосистеми матеріа-

лознавства стають не просто інструментами, 

а інституційними середовищами, що форму-

ють нову етику досліджень, нову логіку від-

криттів і нову модель наукової кооперації 

(рис. 3). 

 

 
 
Рис. 3. Особливості цифрових екосистем матеріа-

лознавства 

 

У такому контексті розвиток матеріальної 

інформатики в Україні має як прикладне, так 

і стратегічне значення. У сучасних умовах, 

коли наука дедалі більше інтегрується в ци-

фрові екосистеми, участь у глобальних плат-

формах, зокрема Materials Project, NOMAD 

Repository та Citrine Informatics, відкриває 

доступ до передових методів моделювання, 

прогнозування й оптимізації матеріалів. Про-

те справжній науковий прорив можливий 

лише за умови двосторонньої інтеграції, тоб-

то не лише споживання знань, але й долу-

чення українських даних, моделей та експе-

риментальних результатів у міжнародні ре-

позиторії. 

Постає необхідність створення локальних 

дата-центрів, які відповідатимуть міжнарод-

ним стандартам FAIR, підтримуватимуть 



Вісник ХНАДУ, вип. 111, 2025 

 
72 

синхронізацію з глобальними системами та 

забезпечуватимуть обчислювальні ресурси 

для вітчизняних дослідників. Така інфраструк-

тура може стати основою для формування на-

ціональної програми з матеріальної інформа-

тики, яка об’єднає академічні установи, галузе-

ві інститути й промислових партнерів навколо 

спільних дослідницьких цілей. 

Особливу роль у цьому процесі відіграє 

освітній компонент. Технічні університети 

України вже демонструють готовність до 

трансформації навчальних програм, упрова-

джуючи курси зі штучного інтелекту, ма-

шинного навчання, аналізу інформації та 

обчислювальної фізики. Наступним кроком 

має стати створення міждисциплінарних 

освітніх треків, які поєднуватимуть фунда-

ментальні знання з матеріалознавства із циф-

ровими компетенціями, що відповідають 

вимогам сучасної науки та індустрії. 
Для молодих дослідників відкриваються 

нові перпективи участі в міжнародних проє-
ктах, отримання грантів (зокрема від Horizon 
Europe, NATO Science for Peace and Security, 
National Science Foundation) та стажування в 
провідних лабораторіях світу. Це не тільки 
сприяє професійному зростанню, але й фор-
мує нове покоління науковців, здатних пра-
цювати на перетині дисциплін і впроваджу-
вати інновації в критично важливих секто-
рах – енергетиці, оборонній промисловості, 
медицині, екології. 

Водночас для сталого розвитку галузі не-
обхідно підтримувати культуру відкритих 
даних, забезпечувати етичне використання 
алгоритмів ШІ та розвивати інтерпретовані 
моделі, що дають змогу пояснити логіку про-
гнозів і забезпечити довіру до результатів. 
Це сприятиме не лише науковій прозорості, 
але й зміцненню міжнародної репутації 
України як активного учасника глобального 
наукового простору. 

 

Висновки 

1. Описано сучасні цифрові платформи в 

матеріалознавстві, що інтегрують великі ма-

сиви даних, обчислювальні моделі та алгори-

тми штучного інтелекту. 

2. Показано, що саме сучасні цифрові ма-

теріалознавчі платформи формують основу 

нової дослідницької парадигми – матеріаль-

ної інформатики, у межах якої методи ма-

шинного навчання, активного навчання й 

глибинного аналізу даних відіграють ключо-

ву роль у прискоренні відкриття, оптимізації 

та прогнозуванні властивостей нових мате-

ріалів. 

3. Запропоновано ключові приклади вико-

ристання відкритих (Materials Project, 

NOMAD Repository) і комерційних (Citrine 

Informatics) рішень для віртуального скрині-

нгу, моделювання властивостей і оптимізації 

складу матеріалів. 

4. Показано, що віртуальні експерименти 

й методи активного навчання дають змогу 

суттєво скоротити витрати на фізичні дослі-

дження, підвищити точність прогнозів і при-

скорити інноваційний цикл у матеріало-

знавстві. 

5. Окреслено основні виклики, пов’язані з 

інтерпретованістю моделей у матеріалознав-

стві, якістю даних, етичними аспектами й 

нерівністю доступу до обчислювальних ре-

сурсів. 

6. Обґрунтовано, що для України відкри-

ваються нові можливості в галузі матеріаль-

ної інформатики завдяки доступу до глоба-

льних платформ, участі в міжнародних про-

грамах і розвитку міждисциплінарної освіти. 
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Digitalization of Materials Science and Directions 

for the Application of Artificial Intelligence 

Problem. The growing complexity of materials de-

sign, the expansion of high-dimensional composi-

tional spaces, and the demand for sustainable inno-

vation have exposed the limitations of traditional 

experimental approaches in materials science. These 

methods are often time-consuming, resource-inten-

sive, and insufficiently scalable to meet the chal-

lenges of modern research and development. Goal. 

The aim of this study is to identify current directions 

in the development of materials science under condi-

tions of digital transformation, with a particular 

focus on the application of artificial intelligence (AI) 

methods to enhance scientific approaches, model 

material properties, and support sustainability prin-

ciples. Methodology. The research involves a com-

parative analysis of leading digital platforms–

Materials Project, NOMAD Repository, and Citrine 

Informatics–that integrate machine learning algo-

rithms, simulation tools, and data management sys-

tems. Case studies from recent publications (2021–

2025) are used to illustrate practical applications of 

AI in energy materials, polymers, and alloys. Results. 

Key areas of AI application in materials science have 

been identified, including virtual screening, active 

learning, interpretable modeling, and automated 

composition optimization. The study evaluates the 

prospects of digital transformation in the field, par-

ticularly in the context of Ukraine’s international 

integration and alignment with sustainable develop-

ment goals. Originality. The paper substantiates the 

strategic role of materials informatics as a new re-

search paradigm that combines AI, computational 

methods, and open science. It proposes approaches 

for integrating Ukrainian materials data into global 

platforms and outlines a roadmap for national infra-

structure development. Practical Value. The findings 

can inform the creation of interdisciplinary educa-

tional programs, the development of a national mate-

rials informatics ecosystem, and the implementation 

of AI-driven innovation in critical sectors such as 

energy, medicine, defense, and environmental tech-

nologies. 

Key words: artificial intelligence in materials scien-

ce, Industry 4.0, sustainable development, digital 

materials modeling, intelligent data analysis. 
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