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Анотація. Мета роботи – розроблення нових наукових і технологічних заходів з підвищення 

корозійної стійкості й експлуатаційної надійності труб з дуплексних і супердуплексних сталей 

нового покоління для забезпечення сучасних вимог споживачів. Результати. Розроблено новіт-

ню технологію виготовлення труб підвищеної корозійної стійкості, засновану на інформації  

про особливості структури та властивостей двофазних високолегованих сталей та на прин-

ципі зернограничного конструювання матеріалів. Оригінальність. Застосовано принцип зерно-

граничного конструювання полікристалічних матеріалів. Визначена ключова функція спеціаль-

них границь зерен ГСВ у - і -фазах у підвищенні стійкості сталей проти локальних видів  

корозії. Практична цінність. Буде збільшено постачання української високотехнологічної про-

дукції на європейський ринок.  
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тивості.  

 
Вступ 

Останнім часом у різних галузях промис-

ловості збільшується рівень застосування 

продукції з корозійностійких економно лего-

ваних нікелем хромонікельмолібденових 

феритно-аустенітних (дуплексних і суперду-

плексних) сталей нового покоління 1–4. Ці 

сталі були розроблені як конструкційні мате-

ріали підвищеної корозійної стійкості для 

менш корозійностійких високолегованих 

аустенітних сталей типу 03Х17Н14М3 (316L) 

1–4.  

В Україні т руби з дуплексних і супердуп-

лексних сталей виготовляє ПрАТ «Сентравіс 

Продакшн Юкрейн» («СПЮ») (м. Нікополь). 

Дотепер основними методами здавально-

приймальних корозійних випробувань таких 

труб є випробування на стійкість проти між-

кристалітної корозії (МКК) у слабо окисному 

середовищі за стандартами ASTM A-262 та 

ISO 3651.  

Але з розширенням галузей  застосування 

та підвищенням жорсткості умов експлуата-

ції труб з дуплексних і супердуплексних ста-

лей до їхньої корозійної стійкості були вису-

нуті нові вимоги. Зокрема щодо стійкості 

проти пітингової корозії (ПК) під час  випро-

бувань за підвищених температур і проти 

корозійного розтріскування (КР) у хлоридв-

місних середовищах. 

Проведені на ПрАТ «СПЮ» попередні 

випробування труб поточного виробництва з 

дуплексних і супердуплексних сталей на 

стійкість проти ПК і КР довели, що вони не 

відповідають новим підвищеним вимогам. 

Для досягнення необхідних для   промис-

ловості результатів потрібно проведення 

комплексних теоретичних, експерименталь-

них і технологічних досліджень. 

 

Аналіз публікацій 

Середній хімічний склад найбільш поши-

реної дуплексної сталі 02Х22Н5АМ3 (UNS S 

31803 / EN 1.4462) є таким (%): С  0,03; 

Cr 22; Ni 6; Mo 3; N 0,17), а супердуплексні 

сталі мають більш високий вміст легуваль-

них елементів Cr, Mo, Nі, N 1. 

Структура дуплексних сталей складається 

з феритної (-) і аустенітної (-) фаз з опти-

мальним їх співвідношенням 50 %:50 % і 

допустимим 40 %–60% кожної. Завдяки дрі-

бнозернистій двофазній структурі, наявності 

міжфазних границь і легуванню азотом міц-

ність дуплексних сталей майже вдвічі вища 

за  еквівалентні їм аустенітні 1–3.  

Дуплексні та супердуплексні сталі за під-

вищених температур піддаються алотропіч-

ним фазовим перетворенням, що розширює 

можливості керування їхньою  структурою та 

властивостями. 
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Основним недоліком зазначених сталей є 

виділення в їхній структурі під час нагріван-

ня, зварювання або повільного охолодження 

в певному діапазоні температур (600-1000 С) 

шкідливих інтерметалідних високохромис-

тих фаз, зокрема σ-фази (Fe-Cr-Mo), що при-

зводить до окрихчування, зниження техноло-

гічної пластичності та корозійної стійкості 

металопродукції 4, 5. Усунути σ-фазу мож-

на високотемпературним гартуванням сталей 

6–8. 

Технологія виробництва гарячедеформо-
ваних труб з корозійностійких феритно-
аустенітних сталей складається з гарячої 
деформації пресуванням суцільних трубних 

заготовок за температур 1100–1180  С з  

наступним термічним обробленням, тобто 

гартуванням від температур 1050–1100С, 
залежно від хімічного складу сталі. Холод-
нодеформовані труби виготовляють з гаря-
чепресованої заготовки способом багатора-
зової холодної деформації з проміжними й 
остаточним  термічним обробленням.  

Інформація  про нові технології виготов-

лення труб з дуплексних і супердуплексних 

сталей, а також про методи підвищення їх-

ньої корозійної стійкості технологічними 

методами в літературі відсутня7–10. У де-

яких роботах  розглянуто підвищення якіс-

них характеристик таких сталей в процесі  їх 

виплавляння 10. 

Останнім часом у деяких  країнах (пере-

важно в Японії, Китаї) розвиваються техно-

логії, спрямовані на підвищення стійкості 

металопродукції з аустенітних корозійнос-

тійких сталей проти міжкристалітної корозії 

та корозійного розтріскування, основою яких 

є  принцип зернограничного конструювання 

(ЗГК) полікристалічних матеріалів [7, 11–16]. 

Вони спрямовані  на утворення структури 

сталей з підвищеним вмістом спеціальних 

границь (СГ) зерен 3 у теорії ґраток вузлів 

(ГСВ), що співпадають,  які мають знижену 

поверхневу енергію та  підвищену корозійну 

стійкість.  

Але запропоновані в них режими оброб-

лень  (критичні деформації + відпали за тем-

ператур 1200–1300 К протягом до 72 годин) є 

неприйнятними для застосування в промис-

ловому виробництві через значну тривалість 

і отримання різнозернистої структури сталі, 

неприпустимої для продукції цього  призна-

чення. Крім того, для корозійних випробу-

вань автори часто застосовують короткочасні 

дослідницькі методи [5, 6] та їхні результати 

не відповідають результатам стандартних 

корозійних випробувань і вимогам промис-

лового виробництва. 

У закордонних публікаціях відсутні дос-

лідження спеціальних границь зерен у сталях 

з об’ємноцентрованою кубічною (ОЦК) кри-

сталічною ґраткою і міжфазних границь зі 

зниженою поверхневою енергією у двофаз-

них сталях.  

Крім того, українськими вченими протя-

гом багатьох років здійснюються наукові й 

експериментальні дослідження з підвищення 

стійкості проти МКК, ПК і КР труб з високо-

легованих аустенітних і феритно-аустенітних 

сталей, які безпосередньо використовують у 

промисловому  виробництві 7, 8. Для якіс-

ного  та кількісного аналізу СГ ГСВ розроб-

лено металографічні та електронномікроско-

пічні методики дослідження зернограничної 

структури сталей з різними типами кристалі-

чних ґраток 17–20, що збільшило рівень  

можливості застосування до них принципу 

зернограничного конструювання. 

 

Мета роботи – розроблення  нових нау-

кових і технологічних заходів з підвищення 

корозійної стійкості й експлуатаційної на-

дійності труб з дуплексних і супердуплекс-

них сталей нового покоління для забезпечен-

ня сучасних вимог споживачів.  

 

Матеріали та методи досліджень 

Матеріалами досліджень були гарячепре-

совані та холоднокатані труби з феритно-

аустенітних дуплексних і супердуплексних 

сталей виробництва ПрАТ «СПЮ».  

Зразки гарячепресованих труб піддавали 

гартуванню у воді від температур 1050–

1200С та подвійному гартуванню у воді від 

1150–1200  С + 1050–1100  С, а холоднока-

тані труби  піддавали попереднім деформаці-

ям зі ступенем від 40 до 80 % і гартуванню за 

тими самими режимами.  

Зернограничну структуру сталей дослі-

джували згідно з методиками, наведеними  в 

17, 20, а також із застосуванням електрон-

ної мікроскопії з дифракцією зворотнорозсі-

яних електронів (ДЗРЕ). 

Корозійні дослідження зразків складалися 

з таких випробувань: на стійкість проти МКК 

у киплячих розчинах (1) 35 % H2SO4 з дода-

ванням CuSO4 і металевої міді – за методом Е, 

ASTM A-262 21 та 2) 50 % H2SO4 з додаван-

ням Fe2(SO4)3 – Практика А, ASTM G-28; на 

стійкість проти ПК: – у 6 % розчині FeCl3 за 

підвищених температур (35, 40 і 45  С)  за 

ASTM G-48; на стійкість проти КР: у кипля-
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чому за 155  С 44% розчині MgCl2  за ASTM 

G-48. 

 

Результати досліджень та їх обговорення 

Дослідження процесів структуроутво-

рення під час  термічних оброблень   

Визначено, що в разі  підвищення темпе-

ратури гартування зразків гарячепресованих 

труб відбувається розчинення шкідливих 

інтерметалідних фаз, зокрема -фази (за 

умови  їх наявності в сталі), помірне збіль-

шення аустенітних і феритних зерен (у сере-

дньому з 9 до 17 мкм) і збільшення кількості 

спеціальних низькоенергетичних границь 

зерен 3 ГСВ в аустенітній фазі (з 55 % до 

 70 %). Водночас  завдяки високотемпера-

турному поліморфному →-перетворенню 

збільшується  до 63–66 % вміст -фази в 

структурі сталі, що перевищує гранично до-

пустиму згідно з вимогами нормативних до-

кументів величину (60 %). Наступне гарту-

вання за знижених температур 1000–1100  С 

(залежно від хімічного складу  сталі) сприяє 

відновленню необхідного балансу - і -фаз 

( по 50 % кожної) та додатковому збіль-

шенню (до  75%) кількості СГ 3 у -фазі 

сталі (рис. 1).  
 

 
 

● – СГ 3; ○ – границі загального типу 

 

Рис. 1. Мікроструктура зразка гарячепресованої 

труби з дуплексної сталі S31803 (02Х22Н5АМ3) 

після подвійного гартування (1150 + 1050) С, 

 2000 

 

Крім того, металографічним методом впе-

рше встановлено наявність спеціальних ни-

зькоенергетичних границь зерен - у фери-

тній складовій високолегованих дуплексних 

сталей (рис. 2, а). СГ - було визначено за 

їхніми  ознаками згідно з методикою 17: 

приблизно  до 180 протилежними їм кутами 

в потрійних стиках зерен (позначені жирни-

ми лініями) і наявністю множинних (четвер-

них) стиків (один з них обведений колом 

червоного кольору на рис. 2, а). 

Міжфазні границі / з пониженим повер-

хневим натяжінням перебувають у четверних 

стиках (позначені літерою «Ч» на рис 2, б). Їх 

наявність і підвищена кількість впливає на 

процеси фазових перетворень, рекристаліза-

ції, а також на корозійні та механічні власти-

вості дуплексних і супердуплексних сталей. 

З підвищенням температури гартування та  в  

процесі подвійного гартування кількість 

міжфазних четверних стиків збільшується. 
 

 
а 

 
б 

 

а – СГ у -фазі,  2000; б – міжфазні границі  

/ з пониженою поверхневою енергією 

 

Рис. 2. Мікроструктура зразків гарячепресованої 

труби з дуплексної сталі після подвійного гар-

тування (метод ДЗРЕ)  
 

Таким чином, зернограничне конструю-

вання в гарячепресованих трубах з дуплекс-

них і супердуплексних сталей реалізується 

внаслідок  високотемпературної деформації 

трубної заготовки з високим ступенем дефо-

рмації (до 95 %) і наступного подвійного 

гартування за розробленим режимом – від 

температур 1150–1200  С + 1050–1100  С. 

Температура  гартування вибирається залеж-

но від ступеня легування сталі,  а для супер-

дуплексних сталей вона має бути на 20–

30  С вища за  температуру гартування дуп-

лексних. 

Під час  експериментів з холоднокатани-

ми трубами визначено, що збільшення сту-
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пеня холодної деформації в процесі  прокат-

ки  з 40 % до 75 % після подвійного гарту-

вання сприяло збільшенню кількості СГ 3 

ГСВ в - і - фазах структури сталі (рис. 3).  

Когерентні та некогерентні СГ 3 ГСВ в 

аустенітній фазі (білого кольору) є прямолі-

нійними паралельними відрізками та зигза-

гоподібними фасетками (рис. 3, а); СГ у фе-

ритній фазі (жовтого кольору на рис. 3, б) 

мають  множинні (четверні) стики (обведені 

колами) і розташовані в потрійних стиках 

границь під кутом, що дорівнює приблизно 

180 (дві з них у верхній і нижній частинах 

знімка позначені стрілками). Кількість СГ в 

- і -фазах становить 85 % і 45 %. 
 

 
а 

 
б 
 

а – СГ 3 в -фазі (білого кольору); 

б – СГ у -фазі (жовтого кольору) 
 

Рис. 3. Мікроструктура зразка холоднокатаної 

труби з дуплексної сталі з підвищеним вмістом 

спеціальних границь:  
 

Крім того, завдяки технологічним можли-

востям ПрАТ «СПЮ» термічне оброблення  

холоднокатаних труб здійснюють у прохід-

ній печі фірми «LOI» (Німеччина) з атмосфе-

рою особливо чистого водню (99,9999 % Н2). 

Це дозволяє унеможливити операцію кисло-

тного хіміко-технологічного оброблення 

труб готового розміру та значно поліпшити 

якість їхньої  поверхні. 

Результати комплексних корозійних дос-

ліджень труб 

Застосування розробленої технології сприя-

ло підвищенню корозійних властивостей труб з 

дуплексних і супердуплексних сталей.  

Значно підвищилася стійкість до пітинго-

вої корозії під час  випробування за ASTM G-

48. Швидкість ПК зразків гарячепресованих 

труб з дуплексних сталей знизилася більше 

ніж у 300 разів (наприклад, під час випробу-

вання за 45 С з 0,48 до 0,0015 мг/см
2
), а 

швидкість деяких зразків дорівнювала 0 мг/см
2
 

7, 8. Крім того, найбільш чутлива до ПК 

характеристика – температурна границя пі-

тингостійкості (температура, за якої швид-

кість корозії зразків не перевищувала 

0,1 мг/см
2
) – підвищилася з 30 С до 45 С. 

Цей результат перевершує результати закор-

донних  аналогів, де максимальна температу-

ра пітингостійкості для труб з дуплексних 

сталей становить 30 С 4, 5. 

Також підвищилася стійкість труб до КР; 

під час випробування напружених до σр = 0,4σ02 

сталі (180 МПа) С-подібних кільцевих зраз-

ків холоднокатаних труб у киплячому розчи-

ні MgCl2 за ASTM G-36 час до появи першої 

тріщини збільшився зі 127 до 270 годин, тоб-

то більше ніж у 2 рази.  

Результати незалежних випробувань дос-

лідних труб фірмою TUV NORD  

З метою розширення ринків у країнах За-

хідної Європи зразки холоднокатаних труб 

розмірами  333,4 мм і  895,5 мм з дуп-

лексної та супердуплексної сталей, виготов-

лених за розробленою технологією, керівни-

цтвом ПрАТ «СПЮ» були передані фірмі 

TUV NORD (Німеччина) для незалежного 

тестування.  

На рис. 4 і в табл. 1–3 наведено попередні 

результати дослідження їхньої структури, 

випробувань механічних властивостей 

(табл. 1) і корозійної стійкості (табл. 2 і 3).  

Згідно з результатами досліджень, мікро-

структура дослідних труб була аналогічна 

отриманій на ПрАТ «СПЮ» (рис. 4). 

Під час  випробування на ударну в’язкість 

було визначено, що труби з дуплексної та 

супердуплексної сталей майже не залежать  

від кріогенних температур (табл. 1). За  

температури – 60  C ударна в’язкість дослі-

дних труб була високою та відрізнялася від 

цієї характеристики за кімнатної температу-

ри лише на 3 % і 11 %, відповідно (табл. 1). 

Висока ударна вязкість труб з дуплексних 

і супердуплексних сталей за кріогенних 

температур дозволяє розширювати сфери  їх 

застосування, зокрема їх можна використову-

вати  для  будівництва нафтогазовидобувних 
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платформ на шельфах морів у північних 

регіонах та в інших галузях промисловості.  
 

 
а 

 
б  
 

Рис. 4. Мікроструктура холоднокатаної труби з 

дуплексної (а) і супердуплексної (б) сталей 
 

Таблиця 1 – Результати випробувань дослідних 

труб на ударну в’язкість за кімнатної і кріогенної 

температур 
 

Матеріал 
№ 

зразка 

KCV 

(J) 

t, 

С 

KCV 

(J) 

сер. 

Дуплексна 

сталь 

(1.4462) 

6-4-1 160 

+ 24 157 6-4-2 160 

6-4-3 152 

6-4-4 144 

– 60 152 6-4-5 160 

6-4-6 152 

Супердуплексна 

сталь 

(1.4410) 

5-4-1 212 

+ 24 211 5-4-2 212 

5-4-3 208 

5-4-4 190 

– 60 187 5-4-5 164 

5-4-6 208 
 

Таблиця 2 – Результати випробувань зразків  

холоднокатаних труб на стійкість проти МКК  

за ASTM G28  
 

Матеріал № зразка 
Швидкість 

корозії, мм/рік 

Дуплексна 

сталь 

(1.4462) 

6-4-4 0,47 

6-4-5 0,49 

6-4-6 0,48 

Середня по 3-х зразках 0,48 

Супердуплексна 

сталь 

(1.4410) 

5-4-4 0,25 

5-4-5 0,27 

5-4-6 0,28 

Середня по 3-х зразках 0,27 

Вимоги ASTM G28  0,93 

Результати корозійних випробувань ком-

панією TUV NORD дослідних труб доводять 

таке:  

під час  випробування зразків на стійкість 

проти МКК за методом А ASTM G28 у кип-

лячому корозійно-агресивному розчині (50 % 

H2SO4 + Fe2(SO4)3) визначено, що швидкість 

корозії зразків з дуплексної сталі була майже 

в 2 рази, а із супердуплексної сталі – у 3,5 

рази нижче за гранично-допустиму згідно зі 

стандартом (табл. 2).  

Раніше такий метод випробувань на МКК 

до труб та іншої продукції з дуплексних ста-

лей не застосовувався, і наведені результати 

були отримані вперше. 

Крім того, за результатами  компанії-

дослідника  TUV NORD швидкості корозії 

зазначених труб були нижчими за  швидкості 

корозії труб з коштовних високонікелевих і 

нікель-молібденових  сплавів (зокрема спла-

вів 625; C-276; 825) за тих самих умов ви-

пробувань.  

Отже, заміна в деяких  випадках труб з 

коштовних високолегованих сплавів на еко-

номні леговані нікелем і молібденом труби з 

дуплексних і супердуплексних сталей сприя-

тиме підвищенню рівня рентабельності й 

ефективності промислового виробництва. 

Дослідні холоднокатані труби також ма-

ють  високу стійкість проти ПК (табл. 3). 

Швидкості пітингової корозії зразків труб з 

дуплексної і супердуплексної сталей під час  

випробування за ASTM G48 за  температур 

35  С і 55  С були стабільно низькими та не 

перевищували 0,01 мм/рік і 0,02 мм/рік, від-

повідно (табл. 3).   
 

Таблиця 3 – Результати випробувань зразків  

труб на стійкість проти ПК за ASTM G-48 

 

Матеріал № зразка t, С Vкор. (мм/рік) 

Дуплексна 

сталь 

(1.4462) 

6-4-1 

35 

0,01 

6-4-2 0,01 

6-4-3 0,01 

6-4-4 0,01 

Супердуп-

лексна 

(1.4410) 

5-4-1 

55 

0,02 

5-4-2 0,02 

5-4-3 0,02 

5-4-4 0,02 

Вимоги стандарту 0,1 мм/рік 

 

Компанія TUV NORD продовжує здійс-

нювати  комплексні випробування виготов-

лених в Україні за новою технологією дослі-

дних труб з дуплексної та супердуплексної 

сталей. Одночасно продовжуються роботи з 

подальшого вдосконалення технології їх ви-

робництва щодо  застосування індивідуаль-
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ного підходу до продукції, залежно від її 

хімічного складу та сортаменту (діаметра й 

товщини стінки).  

 

Висновки 

1. Розроблено новітню технологію виго-

товлення труб підвищеної корозійної стій-

кості з високолегованих феритно-аустенітних 

дуплексних і супердуплексних сталей, засно-

вану на теорії ґраток співпадаючих вузлів і 

принципі зернограничного конструювання 

полікристалічних матеріалів.  

2. Труби, виготовлені за розробленою тех-

нологією, визначаються поліпшеною струк-

турою з підвищеним вмістом низькоенерге-

тичних СГ 3 ГСВ в - і -фазах (до 85 % і 

45 %, відповідно), високими ударною в’яз-

кістю за кріогенних температур (–60  С), а 

також   стійкістю до найбільш небезпечних 

локальних видів корозії: МКК, ПК і КР. 

3. Незалежні випробування компанією 

TUV NORD (Німеччина) довели високу якість 

труб, виготовлених в Україні.   

4. Наведені розробки сприятимуть розши-

ренню сфер застосування труб з дуплексних і 

супердуплексних сталей та впровадженню 

високотехнологічної трубної продукції ПрАТ 

«СПЮ» з високою доданою вартістю на єв-

ропейському ринку.   
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Latest technology for manufacturing pipes with 

increased operational reliability from new genera-

tion duplex and super duplex steels 

Abstract. Problem. The application of corrosion-

resistant, cost-effective, nickel-alloyed Cr-Ni-Mo 

ferritic-austenitic (duplex and super duplex) stainless 

steels of a new generation has expanded significantly 

across various industries. These steels were devel-

oped as structural materials immune to intergranular 

corrosion (IGC) and highly resistant to stress corro-

sion cracking (SCC) and pitting corrosion (PC). 

They are designed to replace less corrosion-resistant 

conventional austenitic Cr-Ni-Mo steels, such as the 

widely used 03Х17Н14М3 (AISI 316L). With the 

broadening scope of applications and increasingly 

demanding service conditions, higher requirements 

have been imposed on the corrosion resistance and 

reliability of duplex and super duplex steel pipes, 

necessitating comprehensive scientific and experi-

mental research. Goal. The purpose of this work is to 

develop scientifically grounded technological ap-

proaches aimed at enhancing the corrosion resis-

tance and operational reliability of pipes made from 

new-generation duplex and super duplex steels, in 

accordance with modern industry requirements. 

Methodology. To achieve this goal, state-of-the-art 

scientific findings and technologies for microstruc-

tural optimization and corrosion performance im-

provement of high-alloy steel products were ana-

lyzed. Experimental investigations employed modern 

techniques for structural characterization and com-

plex corrosion testing, focusing on the steels’ resis-

tance to localized corrosion mechanisms commonly 

encountered under service conditions. Results. Inno-

vative, scientifically substantiated technology has 

been developed for manufacturing pipes with en-

hanced corrosion resistance and operational reliabil-

ity from high-alloy ferritic-austenitic duplex and 

super duplex steels. The approach is based on the 

coincident site lattice (CSL) theory and the principles 

of grain boundary engineering (GBE) in polycrystal-

line materials. Hot-pressed and cold-rolled pipes 

produced using this technology demonstrated  

high impact toughness at cryogenic temperatures 

(−60 °C) and superior resistance to intergranular, 

pitting, and stress corrosion cracking, surpassing the 

performance of foreign analogues in these critical 

quality parameters. The results confirm the high 

operational reliability and expanded applicability of 

new-generation duplex and super duplex steel pipes. 

Originality. For the first time, special low-energy 

grain boundaries within the ferritic phase and low-

energy interphase boundaries in highly alloyed fer-

ritic–austenitic steels were identified. The decisive 

role of these boundaries in enhancing resistance to 

localized corrosion initiated at grain interfaces was 

demonstrated. Practical value. The developed tech-

nology will facilitate the wider adoption of high-

value, corrosion-resistant pipe products manufac-

tured by Centravis Production Ukraine JSC (CPU) in 

the European and global markets, contributing to 

improved material efficiency and service reliability 

in critical applications. Keywords: duplex and super 

duplex steels, pipes, grain boundary engineering, 

microstructure, coincident site lattice (CSL) bounda-

ries, corrosion resistance, mechanical properties 
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