
Вісник ХНАДУ, вип. 96, 2022 Вісник ХНАДУ, вип. 96, 2022

71

71

UDС 004.054 DOI: 10.30977/BUL.2219-5548.2022.96.0.71

APPROACHES TO WEB APPLICATION PERFORMANCE TESTING

AND REAL-TIME VISUALIZATION OF RESULTS

Ushakova I., Plokha O., Skorin Yu.

Simon Kuznets Kharkiv National University of Economics

Abstract. Problem. Today, performance testing is an integral part of the web applications quality as-

surance whose performance failures and performance issues affect the business of their owners.

Goal. The goal of the work is to generalize approaches and methods to improve the quality of web

applications and develop recommendations for improving performance testing using open source

tools. The object of research is the processes of testing web applications. The subject of research is the

approaches, methods and tools of performance testing. Methodology. The study identified the impact

of software performance testing on its quality and its main types, namely load testing, stress testing,

volume testing, stability testing. The main stages of performance testing and their content were identi-

fied. To implement modern automated testing technologies, the advantages and disadvantages of the

most popular tools for testing performance in the modern IT market and continuous visualization of

their results were analyzed and identified. The following factors should be considered when selecting

a performance testing tool: compatibility, scalability, clarity, and monitoring. Time series databases

and visualization tools are used for continuous monitoring of test results together with testing tools.

Results. During the practical implementation of the research results, the goals of different types of

performance testing, indicators of normal operation of the system without exceeding the permissible

limits, test scenarios and test results were identified. Visualization of test results in JMeter is shown

and a board for continuous real-time visualization is created. Originality. The originality of the study

lies in unlocking the potential of open source tools for testing the performance of web applications and

visualizing its results. On the basis of comparative analysis the spheres of application of tools for per-

formance testing are substantiated. Practical value. The practical value lies in the development of

methodological bases for testing the performance of web applications in real time on the example of

the connection of tools Jmeter – InfluxDB – Grafana.

Keywords: testing, web application, performance, load, software quality, quality metrics.

Introduction

Nowadays, performance testing is an integral

part of web application quality assurance. Per-

formance testing is a set of types of testing, the

purpose of which is to determine the efficiency,

stability of resource consumption and other at-

tributes of application quality under different

loads and usage scenarios [1]. Performance test-

ing tries to find possible vulnerabilities and de-

fects in the system during its development in

order to prevent their negative impact on the

operation of the program in use.

Website malfunctions and performance issues

affect the business of their owners. Thus, in 2021,

the largest failure in the history of the Internet

was recorded, when Facebook, Instagram and

WhatsApp stopped working for several hours.

About $ 6,6 billion was lost then, and the compa-

ny’s management had to substantiate itself to

users [2]. There are plenty of such examples.

The Apple Store lost about $ 25 million in profits

due to a 12-hour delay. Delta Airlines canceled

about 2,000 flights and suffered $ 150 million in

losses due to the failure of the computer system’s

operations center for 5 hours.

According to Gartner, the average cost of

downtime for IT giants is about $ 300,000 per

hour of forced inactivity, and in extreme cases

can reach $ 540,000 per hour [3]. Companies are

losing money, but worst of all, they are losing

their business reputation. That is why it is im-

portant for businesses to correctly calculate the

potential load on their websites both in normal

operation and at peak times. Companies turn to

performance testing to find out the causes of

failures, but it must be done in a timely manner.

About 80 % of users admit that they are un-

likely to buy goods or services from a company

whose site “hangs”. This can be illustrated by the

fact that, for example, Pinterest increased site

traffic by 15 % without any marketing costs, only

speeding it up by 40 %, and the BBC found that

they lose 10 % of users for every second of site

load speed [4]. These and many similar examples

emphasize the need to spend money on perfor-

mance testing. Performance testing itself can

Вісник ХНАДУ, вип. 96, 2022

72

ensure the stability of a web application and im-

prove its quality, so improving the performance

testing process when creating such programs is

important.

Analysis of Publications

Analysis of web application testing technolo-

gies allows to divide them into groups, namely:

functional, aimed at verifying the compliance of

functional requirements of the software to its

actual characteristics, and non-functional, aimed

at verifying properties that do not belong to the

functionality of the system. Non-functional prop-

erties characterize reliability, performance, ease

of use, scalability and security.

Performance testing is one of the key compo-

nents of non-functional testing [5–11], because it

helps to test the behavior of the program in dif-

ferent situations. The system can work effectively

with a certain number of concurrent users, but

may become inoperable with many additional

thousands of users during peak traffic. Perfor-

mance testing help determine the speed, scalabil-

ity, and stability of software. There are different

types of performance testing that simulate possi-

ble user scenarios and record program indicators

of behavior

Performance testing does not necessarily re-

flect defects in the application. It must ensure that

the program works properly regardless of fluctua-

tions in network settings, availability and band-

width or traffic load. This is practically a subset

of performance engineering, as a set of measures

for software development and improving all life

cycle processes of its development, which are

aimed at meeting the requirements of productivi-

ty [12]. Therefore, the development and imple-

mentation of these tests are crucial to ensure the

stability of the web application.

Automating performance testing adds

significant benefits to improving the quality of

web applications. There are various tools used for

these purposes, both licensed and open source

[12, 13]. Free tools are of particular interest to

small and medium-sized enterprises. The

advantages of the open source tool Jmeter are

emphasized in [6], and Grinder, NeoLoad, Load-

Runner in [12].

Purpose and Tasks

The goal of the research is to generalize ap-

proaches and methods to improve the quality of

web applications and to develop recommenda-

tions for improving performance testing using

tools for real-time results analysis.

To achieve this goal, it is necessary to dis-

close the impact of software testing on its quality,

determine the metrics and stages of performance

testing, the choice of tools and develop recom-

mendations for the performance testing of web

applications.

The impact of software testing on quality

Software testing is an integral part of any

modern software development methodology. The

essence of the software testing process and its

importance as a component of software develop-

ment are revealed in the literature [14]. The role

of testing is one of the key in the life cycle mod-

el, because it depends on how high quality the

product will reach the customer.

Software testing saves development time and

defect correction costs because the cost of trou-

bleshooting is proportional to the time it takes to

detect it. Fig. 1 shows the impact of software

testing costs on the cost of its quality. Decision

making to increase or decrease the number of

tests can lead to both the detection and omission

of many defects. Therefore, determining the op-

timal number of tests allows you to minimize the

time and cost of testing. The figure clearly shows

that the optimal cost of testing is when it is equal

to the cost of defect correction.

Quality level

C
o

st

Testi
ng cost

F
ix cost

Quality cost

Fig. 1. Dependence of software quality on testing

Recently, the web development market is

gaining momentum. And this trend is only grow-

ing with each passing year, as entrepreneurs’

interest in websites and their mobile versions

grows with the transition to the digital economy.

As mentioned earlier, an important type of web

application testing is performance testing, which

includes [1]:

load testing;

stress testing;

volume testing;

stability testing.

Load testing is performed in order to investi-

gate the possibility of the application to keep the

Вісник ХНАДУ, вип. 96, 2022 Вісник ХНАДУ, вип. 96, 2022

73

73

specified quality indicators under load within the

specified limits, as well as a certain excess of

these limits to determine the margin of safety.

Sometimes this type of testing is used as a syno-

nym for “performance testing”, but this is not

always legitimate, because performance testing is

a broader concept.

Stress testing is performed to study the behav-

ior of the program with “abnormal” changes in

load in abnormal conditions. It allows you to set

limits on the bandwidth of the application, the

reliability of the system at extreme or dispropor-

tionate loads and answers the73uestionn of the

required performance of the system if the current

load significantly exceeds the expected maxi-

mum.

Volume testing is used to study the perfor-

mance of the program when processing different

amounts of data without increasing the load and

operating time.

Stability testing is performed to make sure

that the program will withstand the expected load

for a long time. During this type of testing,

memory consumption is monitored to assess po-

tential losses. Also, this testing allows you to

detect performance degradation by reducing the

speed of information processing and increasing

the response time of the program after prolonged

use of the application.

Defining metrics and performance

testing stages

For the web application to work successfully,

you need to check:

bandwidth, i.e. how fast the server can process

requests when a different number of users are

connected to the system;

how many simultaneous connections the sys-

tem can process;

what is the system response time, etc.

The bandwidth of the system includes two

components: the number of requests received by

the system per second 𝑄𝑃𝑆 and the number of

responses (transactions) provided by the system

per second 𝑇𝑃𝑆:

𝑄𝑃S= QP
𝑇𝑞

⁄ ,

where QP – number of user requests,

 𝑇𝑞 – total query execution time;

𝑇𝑃S= TP
𝑇𝑡𝑟

⁄ ,

where 𝑇𝑃 –number of system responses,

 𝑇𝑡𝑟 – total transaction execution time.

The number of concurrent connections is de-

termined by the number of concurrent users 𝐾.

The response time 𝑇𝑟 consists of the data

transfer time in the network 𝑇𝑟𝑛 and the pro-

cessing time 𝑇𝑟𝑜 (fig. 2):

𝑇𝑟 = 𝑇𝑟𝑛 + 𝑇𝑟𝑜,

where 𝑇𝑟𝑛 = 𝑁1 + 𝑁2 + 𝑁3 + 𝑁4,

 𝑇𝑟𝑜 = 𝐴1 + 𝐴2 + 𝐴3,

 𝐴1, 𝐴3 – server processing time,

 𝐴2 – database processing time.

Client Server DataBase
N1

N4

N2

N3

O1

O3

O2

Fig. 2. Components of system response time

Performance testing as a process involves cer-

tain stages that need to be clearly defined before

testing can begin. Usually distinguish the follow-

ing stages [14]:

collecting information for testing;

definition of test environment;

testing planning:

creation of tests;

environment configuration;

testing and visualization;

analysis of results and reporting.

The first step in gathering information about

web application performance involves determin-

ing:

critical functionality to be tested;

expected system response time;

the expected number of users working simul-

taneously with the system;

expected use of system resources;

future growth of the load on the system, etc.

The definition of a test environment includes

the hardware and software and other tools needed

to perform the tests. It is necessary that the test

environment was as close as possible to the real

environment.

Performance testing planning involves actions

aimed at defining the main goals of testing and

the tasks required to achieve these goals, namely

the team of testers, tools, approaches, metrics and

priorities. The schedule of performance testing is

drawn up at this stage.

The creation of tests includes their design, de-

velopment of load models, and generation of test

data and development of test scenarios in accord-

ance with the project.

Вісник ХНАДУ, вип. 96, 2022

74

The configuration of the environment includes

its configuration both on a separate personal

computer of the tester for cases of small loading,

and a separate usually distributed environment

for considerable loading.

Performing stress testing involves running and

monitoring test results and usually takes several

hours (average two to three hours). If the test is

negative, you need to be able to stop the process

in real time. In addition, during the experiment,

you need to collect the values of many metrics as

the server: response time, bandwidth, and the

system itself: resource loading, system errors,

and so on. To do this, it is convenient to use mon-

itoring systems. They allow you to display all the

results in one place and thus quickly notice the

relationships between different indicators and

decide whether to continue or stop testing.

Collected and analyzed results, identified de-

pendencies are provided to all stakeholders to

make further decisions on the quality of the ap-

plication.

Rationale for choosing testing tools, storing

and visualizing results

The following factors should be considered

when choosing a performance testing tool:

interoperability,

scalability,

clarity,

monitoring.

Interoperability. Keep in mind that the tools

will be used in general in the company, not just

for an individual project. Therefore it is neces-

sary to consider in addition the following factors:

protocols used by the system and which of

them will be checked;

interfaces to external components such as

software components, or possibly to full integra-

tion, for example in the CI process;

interoperability with platforms and their ver-

sions used to host tools and platforms with which

tools interact to monitor and create loads.

Scalability. Performance testing should allow

you to track how software is behaving under

pressure and provide information on how it can

handle scalability.

Clarity should be taken into account given the

technical knowledge required by professionals to

use the tool. This is often ignored and can lead to

unqualified testers setting up tests incorrectly,

which in turn can lead to inaccurate results. Some

open source testing tools require coding skills.

The team must make sure that the tester has the

necessary skills, experience and training for test-

ing, which requires complex scenarios and a high

level of programming and configuration.

Monitoring is taken into account for its suffi-

ciency. In addition, find out the availability of

other monitoring tools available in the environ-

ment and which can be used to supplement with

this tool. Determine whether monitoring can be

correlated with certain operations.

There are many tools on the market for load

testing: Kinsta APM, WebLOAD, Apache

Jmeter, LoadNinja, Loadero, SmartMeter.io,

StormForge, LoadView, NeoLoad, LoadUI Pro,

Silk Performer, AppLoader, Gatling, BlazeMeter,

Rational Performance Tester, k6, Eggplant,

Loadster, Akamai CloudTest, Parasoft Load Test,

Locust, Grinder, Loader.io, LoadStorm, Solar-

Winds, Test Studio, Taurus [13]. Therefore, there

is a need to justify their choice. Among the most

popular tools that meet the need for performance

testing are: Apache Jmeter [15] and Loadrunner

[16]. They are the market leaders and are popular

among testers and developers of leading IT com-

panies.

Table 1 compares Apache Jmeter and Load-

runner performance testing tools.

The main difference between the Jmeter and

LoadRunner tools is the openness of the software

and its price. Jmeter is open source software that

can be easily downloaded from the official web-

site. LoadRunner software is available as a paid

version, and the user must pay for its use.

Table 1 – Comparison of performance testing tools

Specifications Apache Jmeter Loadrunner

Cost Free - Community Edi-

tion free for 50

users,

- $0.56 per virtual

user per day

Code Open Micro-Focus (HP)

Platforms and

protocols

Java objects

Servlets

FTP server

queries

HTTP

SOAP

Pearl scripts

and other

Web services,

.net,

J2EE,

SAP,

Siebel,

PeopleSoft,

Wireless media

and other

User interface Comfortable

simple

Comfortable with

complex structure

Functionality Limited Powerful

Function set-

tings

Yes No

Users Developers,

small and medi-

um companies

Medium and large

companies

Another difference between benchmarking

performance testing tools is supported platforms.

Вісник ХНАДУ, вип. 96, 2022 Вісник ХНАДУ, вип. 96, 2022

75

75

Jmeter can support a variety of platforms, such as

Java objects, servlets, FTP servers, database que-

ries, HTTP, SOAP, Pearl scripts, and more. It can

be easily run for testing on all mentioned plat-

forms. LoadRunner can support platforms such as

web services, .net, J2EE, SAP, Siebel, Peo-

pleSoft, wireless media, and more. And all of

these platforms can be used to test performance.

Another difference between Jmeter software

and LoadRunner is the user interface. The user

interface in Jmeter is user-friendly, but less expe-

rienced and has fewer features than LoadRunner.

The LoadRunner toolkit is technically more ad-

vanced and has more advanced functionality but

the user interface structure is more complex

compared to Jmeter.

Another difference between Jmeter software

and LoadRunner is the configuration of software

features. Jmeter is an open source tool, so it pro-

vides functionality to customize existing features

and modify them as required. LoadRunner is not

open source, so you have to use existing func-

tions.

Thus, both tools have their advantages and

disadvantages, but they remain market leaders in

performance testing. Loadrunner will be the best

choice for large businesses and Apache Jmeter

for small and medium. Therefore, the Apache

Jmeter tool will be used for further research.

Jmeter can save the results of each test to

files, but after a long time the number of files will

be too large. Also, Jmeter generates an extended

report only after the tests are completed, so de-

tailed error logs can only be analyzed after the

test is completed. But the development team and

any stakeholders need to have this information at

all times during testing. This will allow you to

track test results such as slow transactions, in-

formation about API query errors in real time.

This is especially true during long tests, because

defects can be detected in the test system at the

beginning of testing, which leads to the inexpedi-

ency of further testing.

Therefore, the next step is to choose the tools

for easier storage of test results and their contin-

uous visualization, which will allow monitoring

of test results in real time. Typically, non-

relational databases are used to store results,

which will write real-time test logs to a spread-

sheet, and then these data are visualized by a

graphing tool.

In the practice of performance testing usually

use one of the following approaches [17, 18]:

- InfluxDB та Grafana;

- Elasticsearch, Logstash та Kibana (ELK).

To choose the tools for storing and visualizing

the results, their functional features were ana-

lyzed (table 2).

Table 2 – Comparison of functionality

Functionality ELK Grafana

Input data formats ++ +

Built-in integrations +++ +

GUI data streams ++ +

Parsing named +++ a

Input data processing and

enrichment

++ a

Processor templates ++ a

Data visualization +++ +++

Alert p +

Own agents + +

Expansion opportunities +++ +

Documentation ++ ++

Installation process + +

In the table, the signs "+" indicate the pres-

ence of a functional with increasing degree of

capabilities, the sign "a" means that this func-

tionality is provided by agents, the sign "p" –

paid functionality. The analysis of the considered

software solutions revealed a trend on delegation

of functionality of primary processing of logs to

the local agents that simplifies functionality as it

is already visible on Grafana's example.

For ELK, there is a trend of gradually reducing

free functionality and the emergence of more and

more paid. ELK-stack is the most full-featured

solution, but the alert is only available in paid

versions. Grafana is the simplest and most frivo-

lous solution and is suitable for solving narrow

problems related to metric data analysis. There-

fore, the approach using free tools was chosen:

database - InfluxDB and Grafana visualization

tool.

Performance testing with Apache JMeter,

InfluxDB and Grafana

The study of load testing processes focused on

the need to reduce economic risks and take into

account all the necessary business and technical

components. It was determined to conduct all key

performance tests, the components of which are

listed in table 3.

Performance testing metrics and metrics were

determined according to web application quality

requirements. The requirements are listed in Ta-

ble 4, and the most important metrics for identi-

fying problems are in table 5.

The test collections were created based on the

test scripts created in Apache Jmeter. Also,

groups of test users for stress testing under nor-

Вісник ХНАДУ, вип. 96, 2022

76

mal conditions, as well as for stress loads were

prepared.

Table 3 – Functional objectives

Type of testing Objectives

Load Assessing software response

speed

Assessing work speed of hard-

ware

Measurements on the number of

users

Defining productivity limits

Stress Assessing software response

speed

Assessing hardware speed

Assessing the ability to restore

the system

Assessing the stress loads impact

Volumetric Assessing the dependence of the

system on the size of the pro-

cessed data

Assessing the number of simulta-

neously working with the system

users

Assessing the capabilities of data

warehouses

Stability Memory loss assessment

Detection of errors related to data

collection

Assessing the stability of work

for a long time

Table 4 – Load testing requirements

Testing option Value

Active users limit 200

Number of flows 50

Response time 15 sec.

Bandwidth 1 Mbps

Server memory usage 500 megabytes

Number of records read/written

to the data warehouse at the

same time

1000 records

Table 5 – Load testing metrics

Name Definition

CPU usage Determines how much time from

the specified interval was spent by

the processor on the calculation

Memory

usage

Availability of physical memory for

processing in the system

Bandwidth The highest possible data transfer

rate in the network

Response

time

The time between user queries and

application responses

Speed hits The speed of loading application

pages per second

Active ses-

sions

The maximum number of sessions

that can be activated at one time

The parameters used to test the normal load

on the system are shown in table 6. Expected test

result: responses to the queries were received

correctly, the response delay is not more than 5

seconds.

Table 6 – Indicators of normal operation of the system

without exceeding the permissible limits

№ Value

1 200 users log in to the site at the same time

2 All users change the page from 1 to 10 sec-

onds

3 Users leave a request for a consultation

4 Users periodically create orders

Graphs of queries (fig. 3) and responses to

system queries (fig. 4) were obtained after run-

ning the test in JMeter. Fig. 3 shows the maxi-

mum number of requests processed per second in

green and the minimum number in red. Fig. 4

shows the maximum number of system responses

per second in yellow and the average in green.

Their analysis shows that our system processes

an average of 30 requests per second, and the

median response to the request is 63 millisec-

onds, which meets our requirements.

Fig. 3. Number of requests processed per second

Fig. 4. The number of system responses per-

second

A Dashboard was created to visualize the re-

sults in Grafana. It allows you to track their dy-

namics throughout the time of performance test-

ing (fig. 5). There are four graphs on the board

30

20

15

10

5

0

Total Requests per Second

10:57:52 АМ 10:58:25 АМ 10:58:58 АМ 10:59:30 АМ 11:00:03 АМ

11:00:35 АМ 11:01:03 АМ 11:01:40 АМ 11:02:13 АМ

Response Times (ms)

10:57:52 АМ 10:58:25 АМ 10:58:58 АМ 10:59:30 АМ 11:00:03 АМ 11:00:35

АМ 11:01:03 АМ 11:01:40 АМ 11:02:13 АМ

300

200

150

100

50

0

Вісник ХНАДУ, вип. 96, 2022 Вісник ХНАДУ, вип. 96, 2022

77

77

that show the results of system performance test-

ing when processing requests from two sites in

Chrome: histogram of the number of requests per

second (by status); graphs of the number of re-

quests per second (by instances); latency percen-

tiles of request (green for 99 percentiles, yellow

for 50 percentiles, and blue for average); distribu-

tion of request latency.

Fig. 5. Visualization of results in Grafana

Modification of indicators occurs with each

new pass of test scenarios.

The interactive dashboards helps track per-

formance degradation during testing and

identify system vulnerabilities on each of

the measured metrics. Analysis of the results of

the prepared test scenarios for all types of per-

formance testing makes it possible to determine

the readiness of the system for active use, as well

as its quality in accordance with the require-

ments. The results of performance testing accord-

ing to the developed test scenarios are shown in

table 7.

The conducted allows us to draw the follow-

ing conclusions. The system passed most of the

testing scenarios successfully. But checking the

time to refresh the application page after pro-

longed inactive use and checking the execution

time of database transactions in stressful situa-

tions were not passed.

Table 7 – Testing results

№ Test scenario Expected result Yes/No

1 2 3 4

Load testing

1 Check the operation of the system while the normal number of

users are

Work without failures Yes

2 Check the system operation while a normal number of users are

with the authorization page

Work without failures Yes

3 Check the speed of processing the request to the server with a

normal number of requests

Processing speed in an ac-

ceptable range

Yes

4 Check the application response time for a normal network

connection

The response time is in the

acceptable range

Yes

5 Determine the maximum number of users that the program

can work with before it shuts down

Maximum number of users

when working without failures

Yes

6 Check database execution time when 500 records are read/written

at one time

Execution time in an accepta-

ble range

Yes

7 Check database execution time when 1000 records are read/written

at one time

Execution time in an accepta-

ble range

Yes

8 Test CPU and memory usage by the application and database

server under normal load

Use of resources in the normal

range

Yes

9 Check the application response under normal load Response time in the normal Yes

10 Check the response time of the application under low load

conditions

Response time in the normal

range

Yes

11 Check the response time of the application under moderate

load

Response time in the normal

range

Yes

Stress testing

12 Check the operation of the system while interacting with an

excessive number of users

System shutdown Yes

13 Check the operation of the system while interacting with an

excessive number of users with the authorization page

System shutdown Yes

14 Check the speed of processing the request to the server in case

of excessive number of requests

Requests are processed in turn Yes

15 Check the response time of the downloaded program with a

slow network connection

Response time in the normal

range

Yes

16 Check the runtime of the database when 1500 entries are read

or written simultaneously

Execution time in an accepta-

ble range

No

Вісник ХНАДУ, вип. 96, 2022

78

1 2 3 4

17 Check CPU and memory usage by program and database

server under overload

The system stops working Yes

18 Check the response time of the program under overload condi-

tions

Response time increases Yes

Volume testing

19 Check the system operation when simultaneously downloading

files to the warehouse with a nor-mal number of downloads and

with a file of normal size

File uploaded successfully Yes

20 Check the operation of the system when uploading files to the

warehouse with an excessive number of downloads and with a

file with an excessive volume

File upload declined Yes

Stability testing

21 Check for memory loss during peak system interactions The system is working

properly

Yes

22 Check the load time of the application page during peak inter-

action

File upload declined Yes

23 Check the refresh time of the application page after an hour of

inactive use

The page reloaded successful-

ly without delay

No

24 Check page refresh time during peak user interaction The page reloaded successfully

without delay

Yes

The results of load testing indicate a high lev-

el of quality of the software product in terms of

performance in accordance with the require-

ments. Most of the test scenarios were passed

with success. These results indicate the readiness

of the system for active use at high and stressful

loads.

During the testing process, defects that affect-

ed system performance and could affect financial

losses due to temporary unavailability of the sys-

tem for customers were identified. Performance

and load testing has prevented these risks and

identified system vulnerabilities that need to be

addressed to further scale the software product.

Conclusion

Digitalization of the business contributes to

the further spread of web applications, the quality

of which is directly related to performance

testing. Performance testing involves researching

a system with different loads and monitoring the

test results and usually lasts several hours.

If testing gives negative results, it should be

possible to stop the process in real time to reduce

the cost of unnecessary testing.

Many metrics of the system need to be

collected during the experiment. The use of a

monitoring system during testing allows you to

quickly determine the relationships between

different indicators and decide whether to

continue or stop testing.

An approach to web application performance

testing is proposed, which will provide

continuous monitoring of performance test results

through the use of technologies for storing test

results and their visualization. The choice of test-

ing tools was justified, namely Apache Jmeter –

for performance testing, InfluxDB – for storing

test results, Grafana – for creating dashboards

with results. The proposed approach is described

by a real example.

References
1. Тестування продуктивності. Qalight. URL:

https://qalight.ua/baza-znaniy/testuvannya-produk

tivnosti (дата звернення: 02.01.2022).

2. Locked out and totally down: Facebook’s scramble

to fix a massive outage. URL:

https://www.theverge.com/2021/10/4/22709575/fa

cebook-outage-instagram-whatsapp (дата звер-

нення: 02.01.2022).

3. The Cost of Downtime. Gartner. URL:

https://blogs.gartner.com/andrew-lerner/2014/07/

16/the-cost-of-downtime (дата звернення:

02.01.2022).

4. Обновление PageSpeed Insights: что измени-

лось, на какие метрики обращать внимание?

URL: https://siteclinic.ru/blog /technical-

aspects/obnovlenie-pagespeed-insights (дата зве-

рнення: 02.01.2022).

5. Draheim D., Grundy J., Hosking J. Lutteroth C.,

Weber G. Realistic Load Testing of Web Applica-

tions. Conference on Software Maintenance and

Reengineering (CSMR'06). IEEE Xplore. 2006. 11 p.

6. Hamza Z. A., Hammad M. Testing Approaches for

Web and Mobile Applications: An Overview. In-

ternational Journal of Computing and Digital Sys-

tems. 2020. Vol. 9. No. 4. P. 657–664.

7. Israr Gh., Wan M.N., Ahmad M. Web Service

Testing Techniques: A Systematic: Literature Re-

view. International Journal of Advanced Comput-

https://ieeexplore.ieee.org/author/37284104800

Вісник ХНАДУ, вип. 96, 2022 Вісник ХНАДУ, вип. 96, 2022

79

79

er Science and Applications. 2019. Vol. 10. No. 8.

Р. 443–458.

8. Kao Ch., Lin Ch., Lu H. Toward Automatic Per-

formance Testing for REST-based Web Applica-

tions. ICSEA 2016: The Eleventh International

Conference on Software Engineering Advances.

2016. Р. 68–71.

9. Legramante G., Bernardino M., Rodrigues E.,

Basso F. Systematic Literature Review on Web

Performance Testing. Conference: Escola Region-

al de Engenharia de Software. 2020. No. 4.

Р. 285–295.

10. Legramante G., Bernardino M., Rodrigues E., Bas-

so F. Systematic Literature Review on Web Perfor-

mance Testing. 2020: Proceedings of the 4th Re-

gional School of Software Engineering. 2020. 11 p.

11. 10 Best Practices for Application Performance

Testing: Leveraging Agile Performance Testing

for Web and Mobile Applications. Orasi Software,

Inc. 2018. 9 p.

12. Bui S., Shrivastava M., lee E., Dhaliwal J. A case

study of testing a web-based application using an

open-source testing tool. Journal of Information

Technology Management. 2015. Vol. XXVI.

No. 1. P. 19–30.

13. Top 27 Performance Testing Tools to Use in 2022.

URL: https://kinsta.com/blog/performance-testing-

tools (дата звернення: 02.01.2022).

14. Crispin L., Gregory J.: Agile testing. Addison-

Wesley, 2014. 464 c.

15. Apache JMeter™. URL: https://jmeter.apache. org

(дата звернення: 02.01.2022).

16. LoadRunner Professional. URL: https://www. micro-

focus.com/en-us/products/loadrunner-professional/

overview (дата звернення: 02.01.2022).

17. Grafana. Dashboard anything. Observe everything.

URL: https://grafana.com/grafana/

18. What is the ELK Stack? URL: https://www.elastic.

co/what-is/elk-stack (дата звернення:

02.01.2022).

References
1. Performance testing. Qalight. Available at:

https://qalight.ua/baza-znaniy/testuvannya-

produktivnosti (accessed: 02 January 2022).

2. Locked out and totally down: Facebook’s scram-

ble to fix a massive outage. 2021. Available at:

https://www.theverge.com/2021/10/4.

/22709575/facebook-outage-instagram-whatsapp

(аccessed: 02 Jan. 2022).

3. The Cost of Downtime. Gartner. 2921. Available at:

https://blogs.gartner.com/andrew-lerner/2014/07/6

/the-cost-of-downtime (аccessed: 02 Jan. 2022).

4. Обновление PageSpeed Insights: что измени-

лось, на какие метрики обращать внимание?

2019. Accessed 02 Jan. 2022 https://siteclinic.ru/

blog/technical-aspects/ obnovlenie-pagespeed-

insights (аccessed: 02 Jan. 2022).

5. Draheim D., Grundy J., Hosking J. Lutteroth C.,

Weber G. Realistic Load Testing of Web Applica-

tions. Conference on Software Maintenance and

Reengineering (CSMR'06). IEEE Xplore, 2006, 11 p.

6. Hamza Z. A., Hammad M. Testing Approaches for

Web and Mobile Applications: An Over-

view. International Journal of Computing

and Digital Systems, 2020, vol. 9, no. 4, p.

657–664.

7. Israr Gh., Wan M. N., Ahmad M. Web Service

Testing Techniques: A Systematic: Literature Re-

view. International Journal of Advanced Comput-

er Science and Applications, 2019, vol. 10, no. 8,

р. 443–458.

8. Kao Ch., Lin Ch., Lu H. Toward Automatic Per-

formance Testing for REST-based Web Applica-

tions. ICSEA 2016: The Eleventh International

Conference on Software Engineering Advances,

2016, р. 68–71.

9. Legramante G., Bernardino M., Rodrigues E., Bas-

so F. Systematic Literature Review on Web Perfor-

mance Testing. Conference: Escola Regional de

Engenharia de Softwar, 2020, no. 4, р. 285–295.

10. Legramante G., Bernardino M., Rodrigues E.,

Basso F. Systematic Literature Review on Web Per-

for mance Testing. 2020: Proceedings of the 4th

Regional School of Software Engineering, 2020,

11 p.

11. 10 Best Practices for Application Performance

Testing: Leveraging Agile Performance Testing

for Web and Mobile Applications. Orasi Software,

Inc. 2018. 9 p.

12. Bui S., Shrivastava M., lee E., Dhaliwal J. A case

study of testing a web-based application using an

open-source testing tool. Journal of Information

Technology Management, 2015, vol. XXVI, no. 1,

p. 19–30.

13. Top 27 Performance Testing Tools to Use in 2022.

Available at: https://kinsta.com/blog /performance-

testing-tools (аccessed: 02 Jan. 2022).

14. Crispin L., Gregory J. Agile testing. Addison-

Wesley, 2014. 464 c.

15. Apache JMeter™. Available at:

https://jmeter.apache.org (accessed: 02 Jan. 2022).

16. LoadRunner Professional. Available at:

https://www.microfocus.com/en-us/products

/loadrunner-professional/overview (accessed:

02 January 2022).

17. Grafana. Dashboard anything. Observe everything.

Available at: https://grafana.com/grafana/

18. What is the ELK Stack? Available at:

https://www.elastic. co/what-is/elk-stack (ac-

cessed: 02 January 2022).

Ushakova Iryna, Ph.D., Assoc. Prof. Informaton

System Department, Simon Kuznets Kharkiv National

Economic University, tel. +38 066-785-09-92,

iryna.ushakova@hneu.net,

Plokha Olena, Ph.D., Assoc. Prof. Informaton System

Department, Simon Kuznets Kharkiv National

Economic University, tel. +38. 095-570-47-11,

badhel@i.ua,

Skorin Yuri, Ph.D., Assoc. Prof. Informaton System

Department, Simon Kuznets Kharkiv National

https://ieeexplore.ieee.org/author/37284104800

Вісник ХНАДУ, вип. 96, 2022

80

Economic University, tel. +38 066-748-47-51,

skorin.yuriy@gmail.com.

Підходи до тестування продуктивності

вебзастосунків і візуалізації результатів у реа-

льному часі

Анотація. Досліджено вплив тестування продук-

тивності програмного забезпечення на його як-

ість. Для впровадження сучасних технологій ав-

томатизованого тестування були проаналізовані

й визначені переваги та недоліки найбільш популя-

рних на сучасному ІТ-ринку інструментальних

засобів тестування продуктивності й візуалізації

їхніх результатів, що використовуються для без-

перервного моніторингу в режимі реального часу.

Визначені цілі різних видів тестування продуктив-

ності, показники нормальної роботи системи без

перевищення допустимих меж, наведені тестові

сценарії та результати тестування. Показана

візуалізація результатів тестування в JMeter та

створена дошка для безперервної візуалізації в

реальному часі.

Ключові слова: тестування, вебзастосунок,

продуктивність, навантаження, якість

програмного забезпечення, метрики якості.

Ушакова Ірина Олексіївна, к.е.н., доцент кафед-

ри інформаційних систем,

Харківський національний економічний універси-

тет ім. С. Кузнеця,

тел. +38 066-785-09-92, iryna.ushakova@hneu.net,

Плоха Олена Борисівна, к.е.н., доцент кафедри

інформаційних систем,

Харківський національний економічний універси-

тет ім. С. Кузнеця,

тел. +38 095-570-47-11, badhel@i.ua,

Скорін Юрій Іванович, к.т.н., доцент кафедри

інформаційних систем,

Харківський національний економічний універси-

тет ім. С. Кузнеця,

тел. +38 066-748-47-51, skorin.yuriy@gmail.com.

mailto:skorin.yuriy@gmail.com

