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Abstract. The growing popularity of nanosensors in various automotive applications requires new 

methods for counting the frequency of electrical signals, into which the measured non-electrical 

parameters are converted. This need is because automobile nanosensors are to register very small 

changes in the measured parameters that, besides, can change very fast. The paper proposes for use in 

automotive nanosensors a frequency calculation method based on the principle of rational 

approximation, which meets the above requirements. 
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Introduction 

A modern automobile is a complex mecha-

tronic system that includes mechanical and elec-

tronic components connected with a single sen-

sor network [1, 2]. A significant part of the 

promising and existing automotive sensors 

based on nanotechnology [3–5]. Nanosensors 

allow for the reduction of the size of the sensor 

at a lower cost.  

On the other hand, nanosensors have some 

significant differences from traditional ones. 

First, the sensitivity threshold of nanosensors can 

be minuscule. Second, the values of the physical 

parameters measured by the sensors can change 

very fast. These factors cause some significant 

difficulties after converting the measured parame-

ter to the frequency of the electrical signal, since 

the classical methods of frequency measuring [6] 

do not allow the frequency to be registered fast 

and accurately at the same time. Nevertheless, 

frequency-domain sensors are some of the most 

promising tools in metrology due to their high 

resolution and sensitivity, wide dynamic range 

and good stability [7]. Moreover, many physical 

parameters can be easily converted into the fre-

quency of an electrical signal. Thus, frequency 

measurement methods are needed that meet all 

the requirements for use in automotive nanosen-

sors. 

 

Review of the literature 

The first frequency counters used conven-

tional counting when the number of input cycle 

trigger events occur during a fixed reference 

gate was counted [8, 9]. Due to the simplicity of 

implementation, this method is still used. How-

ever, it is not suitable for low and medium fre-

quencies. 

The wide spreading of microcontrollers con-

tributed to the using of reciprocal frequency 

counting [8–10]. In this method, the average 

cycle time MT is first determined, over which N 

input signal periods are registered. Then the 

mean frequency value is calculated: 

 x

N
f

MT
 .  (1) 

Further evolution of frequency counting is 

associated with both the improvement of recip-

rocal counting and the development of new 

methods: continuous time-stamping method [8]; 

the dependent count [9]; methods, based on 

delay-chain technique [11, 12], and multi-

average frequency measurement principle [13]. 

There are some methods, provides for the 

conversion of an analogue sine signal to a digital 

signal which is then processed by any digital 

signal processing technology, for instance, based 

on Fast Fourier Transform [14, 15]. 

 

Purpose and Problem Description 

The literature survey shows the presence of 

numerous frequency counting methods that are 

used to measure various non-electrical quanti-

ties. However, some of these methods are com-

plicated or need expensive instruments, and 

some of them long time for data processing. 

This paper proposes to use the method for de-

termining the signal frequency presented by the 

authors earlier [16–18] in modern automotive 

nanosensors to ensure the speed and accuracy of 

measurements.  

The rest of the paper is organized as follows. 

The following section reviews the applications 

of automotive nanosensors and describes the 

design and principles of operation of some of 
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them. Then, the main provisions of the method 

for determining the frequency are given, some 

examples are considered, and the accuracy of 

this method is analyzed. Finally, concluding 

remarks are given in the last section. 

 

Applications of nanosensors  

in automotive industry 

Recent advances in nanomaterials and 

nanotechnology have made them promising for 

automotive applications. Today nanotechnology 

is used in the production of lightweight and 

durable cars bodies, their components and as-

semblies, more resistant paints, antifriction lay-

ers, and antiwear additives, etc. [3, 4, 19–21]. 

The use of nanotechnology opens up tremen-

dous opportunities in various automotive moni-

toring and control systems. It is well known that 

a modern automobile has a huge number of sen-

sors [1, 22-26]. Their growing responsibilities 

are taken care of improving the performance, 

safety, and comfort aspects. All the variety of 

these sensors can be divided into the following 

groups (Fig. 1):  

 
Fig. 1. Automotive sensors classification 

 

i) to monitor various parameters of the tech-

nical and environmental state of the vehicle;  

ii) for systems that provide driver/passengers 

comfort and safety;  

iii) sensors for monitoring the vehicle exter-

nal environment.  

This classification is conditional since, for 

instance, sensors that monitor the external envi-

ronment can be attributed to systems for improv-

ing driving safety, etc. 

Further development of sensors for these ap-

plications is associated with the use of nano-

technology. Nanosensors offer at the same time 

several key attributes such as small size ele-

ments, low power consumption, fast response 

time, high sensitivity and selectivity.  

A nanosensor is a measuring device that 

combines electronic and mechanical compo-

nents, the size of which does not exceed 100 nm, 

which is more than a thousand times smaller 

than the diameter of a human hair and slightly 

larger than the size of one atom. By now, a 

number of nanoelements suitable for use in 

nanosensors have been developed. These include 

Carbon Nanotubes (CNT), nanowires based on 

semiconductor materials, metals, dielectrics, 

high-temperature oxides, nitrides, etc. [4, 27, 28]. 

There are different types of nanosensors that 

measure various physical parameters. For exam-

ple, pressure sensors are widely used in vehicles 

for engine control systems to improve the vehi-

cle fuel efficiency (e.g., monitoring manifold 

absolute pressure, fuel injection), to measure 

fuel tank, common rail and oil reservoir pres-

sure. Moreover, pressure sensors are necessary 

for the brake system, adaptive suspension, air 

conditioning, tire pressure monitoring, airbag 

control. These sensors work on various princi-

ples like electro-optics, electromagnetic and 

piezoelectricity. 

In particular, Maddipatla D. et al. [29] devel-

oped, fabricated and investigated an efficient, 

flexible and cost-efficient CNT-based capacitive 

pressure sensor. Plesco et all presented a highly 

sensitive piezoelectric pressure sensor based on 

microstructured graphene aerogel functionalized 

by CdS nanocrystalline thin film [30]. A 

piezoresistive pressure sensor (Fig. 2) with a 

200 μm diaphragm with silicon nanowires 

(SiNWs) as the sensing element was also devel-

oped by Lou et al [31]. The sensor is able to 

sustain the pressure above 330 psi. 

 

Fig. 2. (a) Schematic drawing of a pressure sen-

sor, (b) a SEM picture of the central part of 

the pressure sensor, (c) an optical picture of 

the pressure sensor, (d) a SEM picture of a 5 

m SiNW after metal deposition, and (e) a 

TEM picture of the SiNW [31] 

 

Zhang (Fig. 3) also presented the sensor with 

silicon nanowire piezoresistors. The authors 

achieved a high sensitivity of 495 mV/V·MPa in 

the range of 0–100 kPa with the maximum of 

0.13 kPa [32].  

Several variants of piezoresistive pressure 

nanosensors were described in other reports, for 

instance [33–37]. Moreover, pressure 
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nanosensors that work on other physical princi-

ples are also developed [38]. 

 

 

Fig. 3. (a) A photograph of the fabricated SOI 

pressure sensor die using double SiNW be-

fore the release; and (b) a photograph of 

packaged pressure sensor [32] 

 

Other, devices, nanogenerators, have a prom-

ising potential for tire pressure monitoring, as 

well as for the traction coefficient determining 

[26, 39, 40]. The nanogenerator is a miniature 

device consisting of zinc oxide nanofibers, 

which have a well-known piezoelectric effect 

under the influence of low mechanical energies. 

These devices have a high signal-to-noise ratio, 

low cost, flexibility, durability, the ability to 

work in harsh environments, and more im-

portantly, a nanogenerator is a source of energy.  

One of the important applications of 

nanosensors for the automotive industry is sen-

sors for monitoring exhaust gases [41]. The 

main component of the sensor is a sensitive 

layer placed on a solid substrate, which, in con-

tact with the molecules of targeted gas, changes 

its electronic property due to the adsorption 

effect [28]. The components of the active layer 

are metal oxides and sulfides, electrically con-

ductive polymers, and nanostructures. For ex-

ample, nanocrystals of organometallic com-

pounds of platinum exhibit high sensory activity 

on SO2. Gas sensors based on carbon nanotubes 

are also efficient [42-44]. The problem of selec-

tivity of components of complex gas mixtures 

can be successfully solved by using graphene.  

Exhaust gas sensors also include sensors that 

measure the concentration of carbon monoxide 

in a vehicle cabin [45]. 

Apart from pressure and gas sensors, the oth-

er significant types of automotive sensors are 

speed and acceleration sensors, position sensors, 

temperature sensors, and mass/air flow sensors. 

The most important automotive systems are 

safety systems, which reduce the burden of  

death and injury to drivers and passengers in 

road traffic accidents. With this end in view, 

manufacturers develop both passive (e.g., air-

bags) and active safety systems, such as dynam-

ics control systems and rollover protection sys-

tems. One of the most important factors in the 

improvement of such safety systems is the fur-

ther development of acceleration and angular 

rate sensors [46–48]. 

These sensors contain an array of nanowires 

with suspended silicon mass. Mechanical load-

ing changes the electronic properties of 

nanowires. Various materials are used as a mate-

rial for nanowires, for example, barium titanate 

(BaTiO3) [49]; however, carbon modifications, 

in particular, graphene, are most popular [50]. 

Accelerometers consisting of movable and sta-

tionary electrodes made of silicon materials 

(Fig. 4) are also widespread [51, 52].  

 

Fіg. 4. Schematic representation of sensing ac-

celerometer element based on silicon 

nanostructures: 1 – movable electrode;  

2 – stationary electrode [51] 

 

Most of the sensors mentioned above change 

some electrical parameters during the 

measurement. This parameter is then expedient 

to convert to the change frequency of the 

electric signal for further registration of 

measured data. However, as noted above, it is 

necessary to implement the technology of 

frequency signal processing, which can increase 

its reliability in the case of dynamic 

measurements using nanosensors. Nevertheless, 

as we can see from the above, with all the 

versatility of papers, devoted to automotive 

nanosensors, there is not a sufficient number of 

research devoted to improving the accuracy and 

reliability of frequency measurement in 

nanosensors. In the next section, we present the 

results of research [16–18], which will fill the 

gap in the indicated area, and their application 

will allow us to measure the frequency fast and 

accurate. 

 

Fundamentals of principle of  

rational approximation 

The principle of rational approximation pro-

posed by the authors [16–18] is based on a well-
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known method in which the required frequency 

is determined by comparison with a given stan-

dard frequency. However, the main difference is 

that not the usual counting of pulses in the time 

sample is performed, but a particular algorithm 

is utilised. According to this algorithm, the 

crossings of both frequencies is detected. 

For this, two regular independent narrow pulse 

trains with widths  are formed (see Fig. 5). 

One of the train Sx corresponds to the unknown 

(desired) frequency fx and the second one S0 to 

the given standard frequency f0. These trains are 

compared for pulses coincidence and when the 

pulses coincide, a coincidence pulse train Sx&S0 

is generated.  

The first coincidence pulse of the train Sx&S0 

is a trigger to start counting pulses P and Q of 

the trains Sx and S0 respectively. The second 

coincidence pulse of the train Sx&S0 is the stop 

pulse (Fig. 5). This second coincidence pulse 

stops the P and Q counting and their values are 

used for the unknown frequency fx calculation. 

The corresponding block diagram of the circuit, 

providing the frequency fx measurement, is 

shown in Fig. 8. The “Coincidence detector” 

block compares the trains of pulses Sx and S0 for  

coincidence. Precisely at the moment of pulses 

coincidence, the first pulse of the train Sx&S0 is 

formed which starts counting the pulses of the 

trains Sx and S0 with the “P Counter” and “Q 

Counter”. The next coincidence stops the pulses 

counting. The microcontroller unit MCU con-

trols this process and calculates the frequency fx 

by multiplying the given standard frequency f0 

by the ratio of the sum of pulses P and Q: 

 0

n

m
x

n

m

P

f f
Q






, (2) 

where n is the number of pulses coincidence; 

Pn and Qn are the number of counted pulses 

from the trains Sx and S0 that occur between 

adjacent coincidences n and n + 1. 

Besides, MCU stores in its memory the num-

bers P and Q of impulses from the trains Sx and 

S0 counted by the “P Counter” and “Q Counter”.  

Consider the essence of the principle of ra-

tional approximation in more detail, again focus-

ing on Fig. 5. We have two pulse trains Sx and S0 

of frequencies fx and f0. The periods correspond-

ing to the frequencies are Tx = 1/fx and T0 = 1/f0. 

The widths  of the pulses are equal. For this, the 

signal with an unknown frequency needs adjust-

ing with maintaining the original frequency. 

P = 0

T0



1 2 3 4 5

Tx

6 7

Q = 0 1 2 3 ... 10 ... 20

start stop

Time (ms)

S
x

S
0

S
x
&

S
0

 

Fig. 5. Process of direct frequency comparison: geometric theory of coincidence transformation 
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Fig. 6. Block diagram of frequency meter circuit 
 

Denote T as greatest common factor (gcf) 

of both periods Tx and T0. T is the minimally 

discernible time interval and indirectly the quan-

tum, which, as shown below, is determined by 

the stability of the standard frequency. It should 

be noted, that T and the pulses widths  are 

independent parameters. With the help of gcf T 

we can write aTx /T, bT0 /T. Hence, a 

common multiple is cTx /T  T0 /T. If we 

denote Tx0TxT0 /T, then cTx0 /T. 

Fig. 5 shows that some pulses from the trains 

Sx and S0 coincide exactly along the time axis. In 

general, adjacent coincidences n and n + 1 can 

be either complete or partial. The first pair of 

these impulses (P0 = 0, Q0 = 0) is a command to 

start frequency measurement by the frequency 

meter shown in Fig. 6. The Simulink diagram in 

Fig. 7 demonstrates one of the possible ways to 

determine this coincidence and generate the start 

pulse. An AND gate block fixes the coincidence 

and generates the start pulse of the train Sx&S0 

(Fig. 8). The start pulse sets/resets the outputs Q 

and !Q of a JK flip-flop. The appearance of a 

logic “1” from the flip-flop Q output at the in-

puts of &2 and &3 begins counting the number 

of pulses P and Q.  

 
 

Fig. 7. Simulink diagram of the Coincidence 

detector 
 

The next coincidence (Px = 7, Q0 = 20 in 

Fig. 5) generates the stop pulse which resets/sets 

the outputs at Q and !Q of the JK flip-flop 

(Fig. 8). The counting of pulses Pn and Qn is 

completed and the unknown frequency fx is cal-

culated using the formula (2): 

7
100 35

20
xf   kHz. 

Time (ms)

start stop

Sx&S0

Qjk

!Qjk

 0                                  100                                 200

0

0

0

0.5

0.5

0.5

1

1

1

 
Fig. 8. Input and output signals of the JK  

flip-flop  

 

Fig. 9 shows a Simulink diagram to simulate 

the described above example of determining the 

unknown frequency. The counting of pulses is 

performed by the “Counter P” and “Counter Q” 

blocks; as an example, Fig. 10 displays the con-

tents of the “Counter P” block. 

In Fig. 5 the pairs of pulses P0 = 0, Q0 = 0 and 

Pn = 7, Qn = 20 completely coincident. However, 

between two completely coincident pairs of 

pulses, some of the pulses may coincide par-

tially. These partially coinciding pulses can also 

be used to estimate the unknown frequency fx. 
 

 
 

Fig. 9. Simulink diagram of the frequency  

counter 
 

 
 

Fig. 10. Content of the block “Counter P” in 

Fig. 9 
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Fig. 11. The pulse trains with partially coinciding pulses 

 

Consider as an example the pairs of partially 

coinciding pulses in Fig. 11: P1 = 2, Q1 = 3, 

P2 = 11, Q2 = 17. 

Each of the ratios 

 1

1

2

3

P

Q
 , 2

2

11

17

P

Q
   (3) 

can be used for estimating the unknown fre-

quency fx. However, this estimation is not opti-

mal. If we have two relations of the form (3), we 

can find the mediant [53]: 

 2 1 2 1

2 1 2 1

P P P P

Q Q Q Q


 


. (4) 

Thus, the rations (3) are approximants to 

each other and to their mediant: 

 1 2

1 2

2 11 13

3 17 20

P P

Q Q

 
 

 
. (5) 

The mediant (4), (5) is the specific case. For 

the general case, we can write: 

  1,2..., 2,3,... 1
n

m

n

m

P

n m n
Q

  




, (6) 

where n is the number of the ratio, and m is the 

number of the mediant. 

Expression (6) provides continuous averag-

ing of the pulses ratio n nP Q  during the meas-

urement time. 

Denote the ratio of frequencies as 

0/xf f  . Since the median (6) is closer to  

than the fractions that form it, we can write: 

 
0

n

x m

n

m

P
f

f Q





. (7) 

Using the approximants and their mediant we 

can calculate the value of unknown frequency 

and the systematic error of the frequency deter-

mination: 

 
n

m
xm

n

m

P

f f
Q






, (8). 

where fxm is the approximation of unknown fre-

quency fx value.  

For the above example (Fig 11) equation (8) 

yields: 

13
100 65

20
xmf    kHz, 

 

which is exactly equal to the frequency fx from 

the sequence Sx in Fig. 11.  

However, in the general case, calculating the 

frequency of an unknown sequence using coin-

ciding pulses can be accompanied by an error: 

 
1xm

xm

x n n

m m

f

f P Q



 

 
,  (9) 

where xm is the systematic error of frequency 

measurement. 

In (5) we can chose the mediant that satisfies 

the following expression: 

 
00 .x n n

m m

T P T Q T      (10) 
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Conclusions 

Processes in automotive systems can change 

very fast, so the corresponding sensors have to 

have a high processing speed. The use of nano-

technology in automotive sensors imposes addi-

tional requirements, such as high and resolution, 

wide dynamic range, and noise immunity. 

The analysis of nanosensors carried out in 

this paper showed that most of them convert the 

measured parameter into a change in the fre-

quency of the output signal. 

The considered method for determining the 

frequency allows meeting mentioned require-

ments. In the first place, it increases the resolu-

tion and reduces the measurement time required 

for a quantitative assessment of the measured 

parameters. It should also be noted that the error 

in determining the frequency is caused only by 

the instability of the reference frequency, which 

increases the measurement accuracy. 
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Метод визначення частоти для автомобільних 

нанодатчиків 

Анотація. Актуальність. Сучасний автомобіль 

є складною мехатронною системою, що містить 

механічні та електронні компоненти, з'єднані 

єдиною мережею датчиків. Значна частина пер-

спективних і наявних автомобільних датчиків на 

основі нанотехнологій. Проте нанодатчики ма-

ють деякі суттєві відмінності від традиційних, 

наприклад, менший поріг чутливості та високі 

динамічні характеристики. Оскільки переважна 

кількість автомобільних нанодатчиків перетво-

рює зміну вимірюваного параметра на зміну час-

тоти електричного сигналу, то актуальним є 

завдання використання нових методів визначення 

цієї частоти, та як класичні методи не дозволя-

ють реєструвати частоту одночасно швидко й 

точно. Мета. Забезпечення швидкості та точ-

ності вимірювань параметрів автомобільними 

нанодатчиками за рахунок використання нового 

методу визначення частоти сигналу. Метод. 

Запропоновано для забезпечення швидкості та 

точності вимірювань сучасними автомобільними 

нанодатчиками використовувати метод визна-

чення частоти сигналу, що запропонований ав-

торами в попередніх роботах. Результати. Про-

ведений аналіз нанодатчиків показав, що біль-

шість із них перетворює вимірюваний параметр 

у зміну частоти вихідного сигналу. Наведено 

основні положення та приклади використання 

методу визначення частоти на основі раціональ-

ної апроксимації; виконано аналіз точності ме-

тоду, запропоновано його технічну реалізацію. 

Висновки. Запропонований метод визначення 

частоти дозволяє забезпечити виконання вимог 

до автомобільних датчиків: високу швидкість 

вимірювання, низький поріг чутливості, а також 

високу точність за рахунок того, що помилка 

визначення частоти викликана лише нестабільні-

стю еталонної частоти, та знижуватиметься з 

удосконаленням відповідних технічних засобів. 

Ключові слова: автомобільні нанодатчики, вимі-

рювання частоти, метод раціональної апрокси-

мації.  
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