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Introduction 
Throughout history there have been different 

revolutions in industry, each of these revolutions 
representing a major change in the 
manufacturing process. The fourth industrial 
revolution, known as Industry 4.0 (I40), refers to 
a set of technologies aimed to create the concept 
of smart factories. Among these technologies 
appeared Cyber-physical systems (CPS), 
Internet of Things (IoT), Cloud Computing and 
Cognitive Computing. CPSs are considered to 
be a core technology for I40. 

CPSs are physical and engineered systems, 
whose operations are monitored, coordinated 
and controlled by a computing and 
communication core [1]. They are smart 
networked systems with embedded sensors, 
processors and actuators that are designed to 
sense and interact with the physical world 
(including the human users), and support real-
time, guaranteed performance in safety-critical 
applications [2]. 

The CPSs cover a wide range of possible 
areas in which they can be used. Applications 
include medical systems, assistance systems for 
elders, traffic control systems, robotic systems, 
control systems and automation of industrial 
processes, automotive safety systems and drive 
assistance, military systems, to mention a few 
examples. 

One of the main features of a CPS is that 
they have strict timing restrictions, which must 
be satisfied, since otherwise, the results may be 
catastrophic. A system, which requires a 
complete assignment of the resources and 

provides functioning in a timely manner, is 
referred to as a Real-time system (RTS) [3]. An 
RTS interacts with the asynchronous calls to 
maintain a continuous relationship and remains 
synchronized with the environment, reacting 
opportunely to changes in the settings [4]. The 
design of such systems permits an opportune 
response and the execution of a task within 
predefined time constraints. From a functional 
viewpoint, an RTS is a computer system, which 
is dedicated to monitoring of a process or to the 
control of tasks. 

The RTSs implemented in traditional 
hardware are used in a wide range of 
applications. They are embedded into devices of 
common use, which are known nowadays as the 
IoT, as well as into communication devices, 
such as mobile phones and computers. These 
systems have been a subject of great interest due 
to the trend towards the automation of quotidian 
use systems and applications. Examples are self-
driving cars, autonomous airplanes, sensors and 
robots to care the elderly, to mention some of 
them [5]. 

Modeling software for I40 involves modeling 
software for the computational core of a CPS, 
which is an RTS. Due to the nature of its 
temporal restrictions, a particular operating 
system, known as a real-time operating system 
(RTOS), and a specific Application 
Programming Interface (API), must be used. 
PREEMPT-RT, a Linux variant, and a Portable 
Operating System Interface (POSIX), are among 
the most popular RTOS and API for modeling 
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and implementing real-time systems, 
respectively. 

In this paper, the modeling of software for 
I40 is discussed. An introduction to RTSs is 
presented, along with a review of tools to model 
and implement them.  

The rest of the paper is organized as follows. 
In Section 2, we introduce theoretical aspects of 
RTS and RTOS along with the Rate Monotonic 
(RM) and Earliest Deadline First (EDF) 
scheduling policies. Section 3 discuses the key 
aspects to model the computational core of a 
CPS. Section 4 shows an example. Finally, in 
Section 5 some conclusions and future work are 
discussed. 
 

RTSs 
An RTS is a computational system that not 

only must provide accurate results, but also, it 
must provide them in a timely manner. 
Modeling this kind of systems represents a 
challenge since the temporal constraint must be 

identified and controlled. Additionally, a 
designer must verify that all the temporal 
restrictions will be met before implementing the 
RTS. As mentioned previously, the 
computational core of a CPS is in fact an RTS. 
An RTS is conformed of a set of applications 
that request access to processors and resources. 
The scheduling algorithms control the access to 
processor and resources. Task scheduling is 
probably the most intensively studied area in the 
RTSs, since the most important feature of this 
type of computer systems is to ensure that all the 
tasks comply with their temporary restrictions. 
In a monoprocessor system, only one task can be 
executed at a time; any other task has to wait 
until the processor is free and can be re-
scheduled. Nowadays, the goal of 
multiprogramming is to be able to have several 
tasks continuously running, in order to 
maximize the use of the processor. Figure 1 
generalizes the structure of an RTS. 

 

 
 

Fig. 1. Components of an RTS 
 

Definitions 
An RTS is commonly comprised of tasks, 

where each task is subjected to a series of 
temporary restrictions. The number of 
processors limits the maximum number of tasks 
that can be executed simultaneously on a 
computer. Therefore, it is necessary to define 
which tasks have to be executed at each instant 
of time on each processor. The algorithms for 
this assignment are defined by the dispatching 
rules, also called planning policies. In the 

planning context, a task in an RTS represents a 
set of related jobs that provide some functions of 
a system. Every job in a task is released 
periodically, sporadically, or aperiodically. The 
majority of the restrictions imposed to an RTS 
are expressed by the task release times, 
execution times, and most importantly, by the 
deadlines. 

A task has three possible states. When it is 
running, it is called an active task. A task 
waiting for the processing is called a ready task, 
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and all tasks waiting for the processor are kept 
in a waiting list called queue of ready task. The 
planner chooses the order of executing the tasks 
based on the policy established by the selected 
scheduling algorithm. 

Usually, the restrictions that are imposed on 
an RTS refer to the task deadlines. In an RTS, 
the maximum possible time necessary to obtain 
a response must be less than or equal to the task 
deadline. The value that the task contributes to 
the system depends on the fulfillment of the 
deadline, starting at the activation moment. The 
deadlines can be classified as follows: 

- Soft deadlines: the consequences of a task 
that does not finish its execution before its 
deadline do not jeopardize the integrity of the 
system. Commonly, the value that the task 
contributes to the system is maximal if it is 
executed before its term, and it is decremented 
proportionally to the time of completion after 
the term. 

- Hard deadlines: if the task does not finish 
its execution before the deadline, the integrity of 
the system is not committed, and the value that 
the task contributes to the system is zero in this 
case. These deadlines are similar to non-strict 
deadlines, with the difference that, if the task 

does not meet its deadline, the system is not able 
to continue the execution. 

The tasks of an RTS are commonly classified 
into two basic models: periodic and sporadic 
tasks. In both models, the tasks are referred to as 
an infinite sequence of activations called jobs 
[6]. In the periodic task model, the arrival of the 
jobs of a task is strictly periodic, separated by a 
fixed interval of time, called period. In the 
sporadic task model, each job in a task arrives at 
any time once a minimum interval of time has 
elapsed since the previous job of the same task 
has occurred. Among the RTS models, the most 
popular is the periodic task model. 

The RTSs may be classified into two 
categories, accordingly to the kind of their task’s 
deadlines: 

- Soft RTS: missing a task deadline produces 
a performance degradation, but the tasks may 
continue the execution, while the system tries to 
minimize the consequences of missed deadlines; 

- Hard RTS: missing a task deadline is not 
acceptable due to possible catastrophic 
consequences. 
A task is subjected to a series of time 
restrictions, as it is shown in Figure 2. 

 

 
 

Fig. 2. Basic parameters of a task τi: rij, dij, sij and fij are the release time, absolute deadline, start time 
and finish time of the task i in the activation j, respectively; Ci is the execution time in the worst-
case (WCET); Di is the relative deadline; Ti is the size of the activation period 

 
RTOSs 

An RTS must be executed under an RTOS, 
which is integrated into several modules that 
together allow the applications to interact with 
the hardware, in the same manner as a general-
purpose operating system. However, an RTS 
must be designed in such a manner that the 
accomplishment of the timing restrictions of the 
tasks that comprise the system are assured by 
the selection and the use of an RTOS and real-
time scheduling algorithms. The correct choice 
of an RTOS is a fundamental aspect in the 
design of an RTS. 

Almost all existing RTOSs provide two 
priority-based scheduling policies: First-In First-
Out (FIFO) and Round Robin (RR). Liu and 
Layland [7] introduced the RM and EDF 
policies for scheduling periodic tasks in hard 
RTSs. The RM algorithm assigns priorities 
inversely proportional to the task periods; it is 
an optimal static priority assignment policy. It 
can be mapped through the FIFO policy. The 
EDF policy assigns the highest priority to the 
job with the earliest deadline; it is an optimal 
dynamic priority assignment policy [8]. The 
EDF algorithm is not available in most of the 
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existing hard RTOSs. However, EDF gets a 
better utilization of the available processor 
capacity, which allows the execution of more 
tasks in the same processor. 

One of the most popular general purpose 
operating systems is Linux, which is employed 
by the academic community and companies for 
the development and execution of applications 
in diverse fields, such as control, computation, 
health, military and space, to name a few (see, 
e.g., [9]). Linux is not an RTOS. Its scheduling 
policies offer some level of timing guarantees 
for the soft RTSs, but they are not sufficient for 
systems with hard real-time constraints [10]. To 
use Linux as a base for an RTOS, some 
modification to its kernel must be made. 

Generally, there exist two approaches to 
allow Linux to provide a hard real-time support: 
1) at the hypervisor level [11, 12] and 2) at the 
OS scheduler level [13, 14]. The first approach 
allows the coexistence of both, an RTOS and a 
generic OS, where the first one has a higher 
priority comparing with a non-RTOS. In 
contrast, in the OS scheduler level, the real-time 
capabilities are provided using multiple 
scheduling classes, where each class has several 
scheduling policies, being a real-time scheduling 
class of the highest priority. This approach is 
employed by several projects, both as 
commercial and as open source ones. One of 
them is the RT-Preempt [14], which includes 
free open source patches. 

 
Architecture of an RTOS 

In an RTS, activities are commonly 
implemented as tasks or threads. An RTOS 
provides three important functions to attend the 
tasks: 1) scheduling, 2) dispatching, and 3) 
intercommunication and synchronization. 

The scheduler defines the sequence of the 
jobs to be executed on the processor, selecting 
from the list of ready tasks, the next task to be 
executed.  The scheduler implements the 
scheduling policies. In an RTOS, the scheduler 
is a fundamental component since the selected 
scheduling algorithm is in charge of 
accomplishing the temporal restrictions of the 
RTS. The dispatcher is a module that performs 
the necessary bookkeeping actions to start the 
execution of the chosen task. 
Intercommunication and synchronization 
services assure that the tasks cooperate 
correctly, process the actions to avoid a racing 
or similar anomalies. 

To guarantee the time restrictions of the 
RTS, the scheduler implements real-time 
scheduling algorithms, such as RM, EDF, and 
synchronization protocols, such as PIP. The 
RTS designer chooses, among the available 
scheduling algorithms, those that better satisfy 
the RTS characteristics. Some examples of the 
commercial and free-software RTOSs are given 
in Table 1. 

Table 1 – RTOS projects 
 

Project Hard RTS POSIX GLIBC Thread policy Source 
SCHED_DEADLINE + - - - [10, 15, 16] 
Litmus-RT - - + + [13] 
ChronOS - + + + [17] 
Xenomai + + + - [18] 
RTAI + + - - [19] 
RT-Linux + + - - [11] 
VXworks + + - - [20] 
OSE + + - - [21] 
MaRTE + + - - [22] 
SCHED_EDF + + + + [23] 

 

 
 

Figure 3. Relationship between the Linux kernel and GLIBC API 
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To model and implement RTS, the POSIX is 
commonly used. It offers many advantages, such 
as portability and standardization of the 
application development. It is aimed for 
software compatibility between UNIX-like OSs, 
such as Linux, defining an API. 

 
RTS feasibility testing for a CPS 

One important feature of RTS applications is 
that they must be verified before the execution. 
It is crucial to know whether the schedule 
provided by the scheduler is feasible. A 
schedule is feasible if it respects the deadline of 
all jobs. An optimal scheduling policy always 
generates a feasible schedule for a hard RTS, 
providing that a given set of jobs has feasible 
schedules [25, 26, 27]. It is important to know 
that, whether a task set is schedulable or not, 
i.e., the scheduler always generates a feasible 
schedule using a specific policy. This problem is 
commonly known as the feasibility test. [25] 
proved that the feasibility test in uniprocessor 
RTSs is a co-NP-complete problem in the strong 
sense for non-trivial computational models. 

There are two types of feasibility tests: exact 
tests, which check sufficient and necessary 
conditions, and inexact tests, which check 
sufficient but not necessary conditions [8]. If a 
task set is scheduled with a given policy and 
satisfies the exact test, then all the tasks will be 
executed according to their deadlines. On the 
other side, if a task set does not satisfy the 
inexact test, it is not really known whether all 
the tasks may complete their execution 
according to their respective deadlines. Liu and 
Layland [7] demonstrated that RM is an optimal 
policy for the static priority assignment. Their 
inexact test for RM states that a set of n periodic 
tasks is schedulable under RM if: 
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The authors showed that the RM policy is 

able to schedule any periodic task set τ with 
implicit deadlines (periods are equal to the 
deadlines) if the total utilization of the processor 
satisfies 0.69312 ln U , where U  is given 
as follows 
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Table 2 describes the behavior of this 

expression for different values of n. One can 
observe in the table that, by increasing the 

number of tasks, the minimal guaranteed 
utilization converges to: 

 
0.69312 lnmin U .  (3) 

 
Table 2 – Minimal guaranteed utilization of the 

processor for n tasks 
n 

minU  
1 1 
2 0.8284 
3 0.7798 
4 0.7568 
5 0.7433 

… … ∞ 0.6931 
 
A necessary and sufficient (exact) test for the 

RM policy was proposed by Lehoczky et al. in 
[28]. It considers the processor utilization by the 
periodic task set as a function of time at a 
critical instant.  The test is as follows: 

Let τ be a set of n tasks of the periods 
nTTT  21 , respectively, in a uniprocessor 

RTS. The cumulative demand on the processor 
by this set of tasks over the time interval ] ,0[ t  at 
a critical instant is: 
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In this test, Li is the utilization factor required 

to meet the deadline of a task i, ni 1  over 
the time range ] ,0[ t ; Wi is the cumulative 
demand on the processor by a set of tasks τ1, …, 
τi, over the time range ] ,0[ t ; Si is the set of 
activation points for a task τi. In this manner, a 
task τi is schedulable under the RM policy if and 
only if: 

 
  1max 1   ini LL .  (5) 
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Liu and Layland [7] introduced an exact test 
of the EDF feasibility for any periodic task set 
and proved the optimality of the EDF dynamic 
algorithm for uniprocessor architectures. A 
periodic task set is schedulable under the EDF 
policy if and only if: 

 
1U .  (6) 

 
The modeling of software for hard RTS (i. e., 

for I40) requires that the designer define the 
parameters of the system task: deadlines, 
periods, worst-execution times, among others. 
Also, a scheduling policy must be selected, and 
a feasibility tests must be applied, in order to 
verify that every temporal restriction is satisfied. 

 
Modeling an RTS 

A CPS system is comprised of a 
computational core (cybernetic system), a 
communication core, and a controlled system 
(physical system). The computational core is in 
essence an RTS. In this section, an example of 
the modeling of a computational core for a CPS 
is discussed. 

 
A controlled system 

A prototype of a controlled system was 
designed to illustrate a CPS system. This system 
is composed of three threads. It considers a 
periodic task (thread) that controls the 
appearance of any external object within a 
predefined range, and two independent tasks that 
perform calculations in the background. Such a 
system can be interpreted as a mobile robot, 
which checks periodically whether an object 
makes obstacles in his trajectory. If an object is 
detected, it turns an LED on immediately. 
Conversely, when the object is no longer 
detected, the LED is turned off. These actions 
are equivalent to the re-adjusting of the robot’s 
trajectory, within a specific timing window, to 
avoid a collision. 

An ultrasonic HC-SR04 was used for the 
obstacle detection with the goal to detect objects 
and also to calculate the distance from the 
sensor to an object in a range [2  450] cm. The 
sensor sends a start pulse and measures the 
width of the returned pulse. An Arduino UNO 
microcontroller was used to communicate the 
ultrasonic sensor with the controlling system 
(such as, e. g., a computer). Figure 4 shows the 
architecture of the used RTS prototype. The 
LED was connected to the GND pin and the pin 
of the Arduino micro-controller in order to 
represent the turning ON/OFF of the light. Also, 

the pins are used for the trigger and echo of the 
sensor, respectively. Finally, the VCC and GND 
pins are connected to the 5v and GND pins of 
the Arduino UNO. When an object is detected 
within the range, the system checks whether the 
LED light is turned OFF and turns it ON. If the 
LED light is turned ON, no action is performed. 
When the task is activated in its next period and 
the object is no longer within the detection 
range, the system checks whether the light is 
switched ON to turns it OFF. The controlling 
system communicated with the Arduino micro-
controller through the USB serial port, using the 
Arduino-Serial library [29]. 

 

 
Fig. 4. Architecture of the controlled system 

 
Experiment 

To evaluate the feasibility of the system, the 
controlling system was implemented on a Dell 
Vostro 260 with 6 Gb of RAM and an Intel® 
CoreTM i3-2100 CPU @ 3.10 GHz. However, 
since a mono-processor kernel was configured, 
only one core and 1 Gb of RAM were used. The 
system ran on a Debian GNU/Linux 7.4.0 
Wheezy i386 OS, using the PREEMPT RT 
3.4.61edfV2-rt77+ and the SSELINUX-EDF 
patches. The system used the EDF policy 
through the SSELINUX-EDF developed by 
Amaro et al. [23]. The scheduling algorithms 
used were RM and EDF. The task model was 
the periodic task model. The system is 
comprised of three hard real-time tasks. The 
parameters of the tasks are shown in Table 3. 

 
Table 3 – Parameters of the experimental task set 

(time is given in ms) 
Thread Ci Di Ti 

1 290 700 700 
2 50 600 600 
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3 190 400 400 
To model the correctness of the system, a 

feasibility test must be conducted. The test was 
carried out using two corresponding applications 
developed with the aim to simulate realistic 
scenarios. Three independent threads were 
created, with different deadlines and WCETs. 

Given the time of execution of the tasks, the 
total utilization of the processor is: 

400
190

600
50

700
290

U , 972.0U . 

The exact schedulability test of [28] was 
used to verify the schedulability of the task set 
using the RM scheduling policy: 

 700 600, ,4003 S , 
400530 3211  CCCW , 

6007202 3212  CCCW , 
70077022 3212  CCCW . 

The test showed that Thread 1 is not capable 
to reach the execution time before the 
corresponding deadline even in the first 
activation. Threads 2 and 3 showed the same 
behavior. 

Figure 5 displays a Gantt diagram, which 
shows that the tasks are not schedulable under 
the RM policy. This means that some deadlines 
are met, due to the missed deadline by the first 
job of Thread 1. If the parameters cannot be 
modified, the tasks would not be executed 
correctly under the existing scheduling policies 
in RT-Preempt. However, the value of the total 
processor utilization 1U  implicates that the 
task set can be still correctly scheduled using the 
EDF policy. 

The next test was performed under the EDF 
policy as shown in Figure 6. The purple arrows 
display the activations and deadlines of the 
threads. The subsequent observations can be 
derived from the diagram: 

- All the task’s jobs were fulfilled by the 
respective deadlines. 

- The non-real-time tasks, which were 
grouped in Idle, were processed only when the 
real-time tasks did not require to be executed. 

- The schedule is similar in both 
hyperperiods, which are separated by a vertical 
red line. 

 

 
 

Figure 5. Schedule of the task set using the RM policy 
 

 
 

Figure 6. Schedule of the task set using EDF (two hyper periods) 
 

Table 4 displays some metrics obtained for 
the first hyperperiod. We can draw the following 
conclusions: 

– The required time to switch between two 
tasks (context switch) with EDF is larger than 
with RM. 

– Each time a task needs to be activated, 
EDF uses more time than RM. 

– There is a double number of preemption 
points using the RM policy. It corresponds to the 
observation by [27] that RM introduces more 
preemptions than EDF. 

Nevertheless, despite the FIFO policy 
requires less time to accomplish context 
switches, the times of the EDF algorithm are 

minimized during the execution because it does 
not produce such a quantity of preemptions. 

Table 4 – Metrics of the RM and EDF policies  
(average time in microseconds) 

 

Policy Context 
switch Task wakeup Preemption 

points 
FIFO 
(RM) 

11.077 2.310 14 

EDF 12.344 3.364 7 
 

Conclusion and future work 
CPSs are a key component for developing 

applications for I40. CPSs are comprised of a 
computational core, a communication core, and 
a physical system. Since the computational one 
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has strict timing restrictions when model it, the 
designer must verify that all the temporal 
restrictions will be satisfied. In this paper, the 
modeling of the software for the Industry 4.0 
was discussed. An example was introduced, 
showing techniques to determine the correct 
execution of the system. It was shown that the 
selection of the scheduling policy of the 
computational core is fundamental in satisfying 
the timing restrictions of the system. 

As future work, we plan to implement the 
RTS using an embedded system as the hardware 
platform. 
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АСПЕКТИ ТИМЧАСОВИХ ОБМЕЖЕНЬ 
ПРИ ВИМІРЮВАННІ КІБЕРФІЗИЧНИХ 

СИСТЕМ У ПРОМИСЛОВОСТІ 
 

Анотація. Кіберфізичні системи (CPS) в Ін-
дустрії 4.0 складаються з обчислювального ядра, 
ядра зв’язку й фізичної системи. Обчислювальне 
ядро має чіткі часові обмеження і являє собою 
систему реального часу (RTS). RTS, реалізовані в 
традиційному встаткуванні, використовуються 
в широкому спектрі додатків, таких як пристрої 
загального користування, відомі як Internet of 
Things (Iot), а також пристрої зв’язку, мобільні 
телефони або комп’ютери. Ці системи виклика-
ють великий інтерес через тенденцію до авто-
матизації систем і додатків для щоденного ви-
користання, наприклад, самокеровані автомобілі, 
автономні літаки, датчики й роботи для догляду 
за людьми похилого віку. Одна з основних особли-
востей RTS полягає в тому, що вони мають 
строгі часові обмеження, які повинні бути вико-
нані, оскільки в протилежному випадку резуль-
тати можуть бути катастрофічними. RTS ви-
конуються в операційній системі реального часу 
(RTOS). Однією з найбільш популярних операцій-
них систем є Linux. У якості алгоритмів плану-
вання в Linux використовуються політики плану-
вання на основі пріоритетів First-In First-Out 
(FIFO) і Round Robin (RR), але вони недостатні 
для жорстких RTS. У цій статті пропонується 
інтегрування політик Rate Monotonic (RM) і 
Erliest Deadline First (EDF) у систему Linux для 
планування періодичних завдань у жорстких RTS. 
Tест на виконуваність розкладів в однопроцесор-
них RTS є co-NP-повною задачею у суворому сми-
слі для нетривіальних обчислювальних моделей. 
Лехоцьким був запропонований необхідний і дос-
татній (точний) тест для політики RM. Він роз-
глядає використання процесора набором періоди-
чних задач як функцію часу в критичний момент. 
Люй Лейленд увели точний тест виконуваності 
EDF для будь-якого періодичного набору завдань і 
довели оптимальність його динамічного варіан-
та для однопроцесорних архітектур. Для ілюст-
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рації CPS був розроблений прототип контролю-
ючої системи, що складається із трьох потоків 
(threads). Виконуваність розкладів отриманих з 
використанням EDF y RM, було перевірено за 
допомогою обох тестів. Тести показали, що, ви-
користовуючи політикові RM, один із трьох по-
токів не зміг виконатися до відповідного край-
нього строку при першій же активації. Однак 
значення загального використання процесора по-
казало, що набір задач може бути правильно за-
планований з використанням EDF. При цьому всі 
завдання виконувалися відповідно до встановле-
них строків; завдання, що не потребуть виконан-
ня в реальному часі, були згруповані в незайнято-
му (Idle) часі й оброблялися тільки тоді, коли 
задачі реального часу не вимагали виконання; 
отриманий розклад є аналогічнм у двох дослі-
джених гіперперіодах. 

Ключові слова: система реального часу, кібе-
рфізична система, планування, Індустрія 4.0, ал-

горитм Earliest Deadline First, алгоритм Rate 
Monotonic. 

 
АСПЕКТЫ ВРЕМЕННЫХ ОГРАНИЧЕНИЙ 
ПРИ ИЗМЕРЕНИИ КИБЕРФИЗИЧЕСКИХ 

СИСТЕМ В ПРОМЫШЛЕННОСТИ 
 

Аннотация. Киберфизическая система для 
Индустрии 4.0 состоит из компьютерных про-
грамм, коммуникационных программ и физичес-
кой системы. Компьютерные программы имеют 
строгие временные ограничения и представляют 
собой системы реального времени. В этой ста-
тье дискутируются вопросы моделирования та-
ких программ. 

Ключові слова: система реального времени, 
кибер-физическая система, планирование, Инду-
стрия 4.0, алгоритм Earliest Deadline First, алго-
ритм Rate Monotonic. 


