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Abstract. The objective of this work is to propose a model to obtain velocities and directions when
spherical hard-bodies collide by Molecular Dynamics (MD). The simulation was executed in
MATLAB, the results: packing-fraction, radial distribution functions and collisions frequencies, are

presented.
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Introduction

Molecular simulations have received a great
importance to model the properties and predict
behaviors of solids, liquids and gases. A three-
dimensional structural model of a material can
be designed, in many cases, as a set of identical
hard spheres occupying the available space.
When this space is limited to a predetermined
region, the properties of the material strongly
depend on the arrangement and density of the
particles; this implies a scientific interest in the
simulation of the motion of particles in
significantly limited volumes. The consideration
of collisions between particles in simulations is
fundamental to obtain results, since the
collisions lead to a change in energy in the
system, especially in deterministic methods,
such as Brownian dynamics, general Langevin
dynamics (which is an extension of Brownian
dynamics), Monte Carlo methods (MC), discrete
element method (DEM) and molecular dynamics
(MD) [1].

Collisions are also associated with a wide
range of applications such as robotics, car traffic
safety, video games and other real-time
animation systems, virtual and augmented
reality, sensors, nuclear reactors, material
science, and others, where they appear in
problems related to collision solutions and their
prevention, and are treated by strategies for
solving collisions using mathematical, physical
or computational methods [1-12]. Some of these
systems can be interpreted as elastic collisions

between hard spheres, and they are simulated by
means of MD.

In the Chemistry area, processes are
determined by the dynamic of collisions.
Colloids are a good example, defined by the
British Encyclopaedia as “any substance
consisting of particles substantially larger than
atoms or ordinary molecules but too small to be
visible to the unaided eye” [13]. In 1995, Segre
et al., evidenced that particles in suspensions of
poly-methylmethacrylate (PMMA) interacted
like hard spheres [14]. The authors described
accurate methods to determine both the particle
radii and the sample concentrations, using
Lattice-Boltzmann  simulations, based on
particle collisions. Efficient methods and
devices, which used a collision analysis, have
been developed for studying the size and
configuration of colloidal particles, e.g.
Rutherford scattering, mass spectrometer, ion
beam analysis and electron microscope [8, 15-
18].

Some algorithms of molecular dynamics use
periodic boundaries, in which the particles can
move, instead of a restricted space [1].
However, more realistic applications require
algorithms to model collisions in closed spaces,
when particles are located inside of a container
and the collisions occur between particles as
well as between particle and container walls.

In the present work, using the MD, a model
has been developed for obtaining new velocities
and directions when spherical hard-bodies
collide with each other or against a straight
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surface. It then describes the MD simulation in
the MATLAB for a hard-sphere system in a
cylinder, and finally some concluding remarks
are given.

Modeling of collisions between spherical
objects

A collision determines the trajectory
followed by a particle after chocking with
another particle or a restricting surface.
However, there exist a few algorithms that
consider a restricted space of movements. Given
the importance of collisions in molecular
simulations, the modeling of the collisions is
necessary to determine and predict the behavior
of spheres. If the body is not an ideal sphere, it
is possible to approximate its shape in this way:
inscribing the body within the smallest sphere
possible, similar to the idea proposed by
Torquato and Stillinger in 2010 [19]. The
velocities assignment is as
follows.

Velocity initializing

In any molecular simulation, the particles of
a material are created with an initial position and
velocity. In MC simulations, a sphere is
randomly allocated according to a probability
distribution function (PDF), usually a normal
distribution or a Gaussian distribution [8]. In
MD, the position of a sphere i is assigned in a
deterministic manner according to the face-
centered cubic structure (fcc). The velocities are
first assigned using a uniform distribution and
then are translated by a factor making the total
linear momentum equal to zero [1], according to
the formula (1)

VR = Vit - LEN v (1)

and similarly, for the y- and z- axes.
A model to assign these velocities is
described below.

Interparticle collision
According to Tsou and Wayne (2004), when
two congruent spheres i and j having the radius
r, the mass m, the position [x, y, z] and the initial
velocity [V,, V,, V-], collide, the modification of
the trajectory and velocity are -calculated
according to the following expressions (2) and

() [6]:

Sphere i: VW = ygld +];" ()

Sphere j: V,Z-ew = V,?]-ld I 3)

m

The impulse J, due to the normal force in the

x direction at the moment of collision is (4)
mAx

Jx =25 AV - A, (4)

One can use analogous expressions for the y-
and z- components.

Both particles follow the movements
according to the new individual velocities until
the next collision with another sphere or with a
wall, and the trajectories continue to be updated
throughout the simulation.

Sphere-wall collision

In molecular simulations, the spheres are in
constant movement being in an infinite space.
However, if a simulation is considered in a
restricted space such as a cylinder or a cub with
straight walls is considered, the particles
generate the proper trajectories in the container.
The collisions of a sphere with other spheres and
also against the walls of the container can be
modeled as follows.

The velocity of a sphere that hit the container
wall is obtained by the following vector
equation (5):

V,=[V;-plp+ [V, fln, (%)

where
5_ D
P= ol ©
p=nxA (7)
A=V, xn ®)

As can be distinguished in fig. 1, V; is a
vector that indicates the new velocity of the
particle #; V; is the vector of the initial velocity
of the particle, P is a vector parallel to the wall
of the cylinder, and 7 is the vector of the normal
to the particle moving direction before the
collision at the point, where the particle hits the
wall.

When a sphere collides with a wall, there is
no transfer of energy from the sphere to the
wall, i.e., a sphere keeps the energy due to the
considerable difference of the size. The vector
of the normal calculation depends on the impact
zone and the container geometry, as it is
resumed in table 1. The impact zone can be: 1)
the lateral wall, 2) top and bottom walls, or 3)
two or more walls simultaneously.
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The previous equations are useful when a
sphere impacts a single wall, but it is possible
that a sphere hits the wall and one of the caps
simultaneously. If this occurs, the line of
movement of the particle is the same but the

direction is opposite: V, = —=V;.
n
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Fig. 1. Trajectory of a sphere after a collision
with a straight wall

Simulation of a hard sphere system in a
cylinder using MD

MD provides a methodology for detailed
microscopic modeling at the molecular level,
which is becoming an indispensable tool for
both theoretic studies and applied researches
[20].

The movement of spherical bodies under the
action of a force field is the principle of the MD
simulation, which is considered as a
deterministic model because the movement of
each sphere is known. When a collision of a
sphere with another sphere or with the wall
occurs, the velocity is updated according to the
momentum conservation law [1].

MD approaches

There are two natural approaches to simulate a
system of particles: 1) the event-driven
simulation and, ii) the time-driven simulation.
The former focuses on the determination of the
ordered sequence of particle collisions. In this
model, all particles move in straight line
trajectories at a constant speed between
collisions. The latter discretizes the time into a
number of the periods of size df; the position of
each particle is updated every df units of time
and the overlaps between all particles are
verified. If a collision has occurred, the position
and the velocity of the particles are updated and
the simulation continues. For better results,
Leach (2001) suggests the time step durations
with continuous potentials, according to the type
of particles in the system, see table 2 [21]

In an MD modeling, there are two principal
steps: 1) the development of a model for the
problem and 2) the simulation of MD applied to
the model. The simulation is determined by the
generation and analysis of the trajectories. The
generation of trajectories is made according to
the type of the bodies that are being simulated
and the permission of overlapping (hard or soft
spheres); then the static and dynamic properties
for the received model are calculated.

The objects can be modeled as hard spheres,
bodies that do not represent any electric charge,
and they cannot overlap each other. The
molecular forces between these bodies are
described by discontinuous functions of the
distance between them. Namely, hard spheres
exert forces on one another only in case of a
collision.

Table 1 — Calculation of the vector of the normal for distinct containers and different impact zones

Geometry of the Impact zone Vector of the normal 72
container
Cylinder body o —Xl—y,]
Cylinder n= R
Cylinder Caps fi=+k
Wall intersecting the { iLif x=r }
. n=3 ..
X-ax1s —iif x=L—r
Wall intersecting the o { 7 if y=r }
Cube y-axis “=j if y=L-r
Wall intersecting the . k, if z=r
. n-=
Z-ax1s —k, lf 72=L—7r

Table 2 — MD with continuous potentials: Time-step of the different types of movement present in systems

System Movement type Suggested time-step (in s)
Atoms Translation 10
Rigid molecules Translation and rotation 5x107°
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Simulation stages in MD

The algorithms of an MD simulation are
constituted by three stages:

Initialization. The initial structure is
generated according to the face-centered cubic
(fce) lattice; the velocities are assigned to each
particle according to Maxwell’s distribution,
causing the system to be in equilibrium.

Equilibrium. One of the main characteristics
of this stage is that, regardless of the initial
structure, the results of the simulation must be
statistically equal. In this stage, the particles
move indefinitely until the structure becomes
disordered; this is measured by the parameter A.
The collision modeling is very important at this
stage to reach the objective.

Production. In this last stage, the properties
of the system are calculated; some equations to
determine  different static and dynamic
properties are defined in terms of collisions. For
example, the equation to calculate the
compressibility factor is (10):

Z=1+ 0050 |avy ()], (10)
where m is the mass and d is the diameter of the
spheres, E; represents the kinetic energy in the
system, ¢ is the lapse of time, N, is the number
of collisions, and v; is the change of velocity in
the collision [1].

Results of the simulation

A simulation of a hard-sphere system in a
cylinder was developed using the fundamentals
of MD and the software MATLAB® to compute
some structure properties: the packing fraction,
the radial distribution function and the stats of
the collisions during the simulation. The
specifications of the computer used are: AMD
A10 processor and a RAM of 16 GB, 800 MHz.

The simulated system was colloidal silver,
since in the simulations of colloids, the solute
particles are considered to be hard spheres, and
the presence of the solvent is not included in the
MD calculations. In 2014, van Swol and Petsev
established that this exclusion is correct when
the solute—solute collisions predominate over the
solute—solvent collisions [22]. The parameters
considered were taken from the characterization
of colloidal silver dissolved in water, presented
by Franco-Molina et al. [23]. The study was
realized by dynamic light scattering (DLS); the
solute showed a mean diameter of 100 nm.

The parameters of the simulated system are:

Number of spheres N=225;
e Height of the cylindrical container L = 5;
Diameter of the cylindrical container D =
2;
e The diameter of the spheres (particles of
solute) d= 0.1 (equivalent to the size of

100 nm).

Atomic packing fraction

The atomic packing fraction (4PF)
represents the space occupied by atoms in the
container. A material of a high APF is
considered as a dense material, otherwise is a
porous material. In the present simulation, the
APF remains constant, and it is calculated by
formula (11):

APF = Vspheres (11)
Vcontainer
According to Francon (1929), the importance of
APF lies in the information that it provides
about the structure of the material and the
stability of its atoms [24]. Fig. 2 shows the
stages of initialization, equilibrium and
production of the simulated system.
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Fig. 2. Graphics of the MD simulation of colloidal silver in a cylinder, stages of: (a) initialization, (b)
equilibrium, and (c) production (r=0.1, N=225 spheres, APF= 0.2 %)
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Radial distribution function

The equilibrium structure of liquids and
complex fluids in general is characterized by the
radial distribution function g(») (RDF). It is
proportional to the probability of finding two
atoms separated by the distance » + Ar [22]. The
RDEF is calculated according to the equation (12)
[25]

N(r,Ar)
%N pV(r,Ar)

g(r) = (12)

Here N(r, Ar) is the number of particles
found in a spherical shell of radius » and
thickness Ar, with the spherical shell centered
on a fixed particle; p is the number density of
the general system and V(r, Ar) is the volume of
the spherical shell.

The RDF indicates the influence of one
particle in the system over the positions of the
closest neighbors. In fluids, if the separation is

a()
o

less than one particle diameter, then g(7)=0; for
large separations, the central particle does not
influence the position of the others, then g(r)=1,
this means that the density is uniform [1].

The graphs of the RDF of the stages from the
simulated system are shown in fig. 3.

Analysis of the collisions

The equations modeled in previous section
were applied in the simulated system of
colloidal silver. The diagram in fig. 4 shows a
comparison between the collisions sphere-
sphere and sphere-wall in the stages of
equilibrium and production. In the first stage,
initialization, collisions are absent.

The simulation computed the frequency of
collisions, resulting that the frequency of them in
the equilibrium was feq=2.2810><103Hz and, for
the stage of production ﬁ,md=1.3995><105Hz.
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Fig. 3. The radial distribution function g(7) of the simulated structure in the stages of: (a) initialization,

(b) equilibrium, and (¢) production
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Fig. 4. Analysis of the collision in the MD simulation: stages of equilibrium and production

Conclusions

In this work, the importance of the collision
modeling in different areas of science and
technology was evidenced.

Equations to model the collision in restricted
(finite spaces) were developed to obtain the
velocities of the spheres that collide with the
wall(s) of the container. These formulas are valid
when the walls are straight, for example in
cylinders and cubes.

This model can be used not only for
atoms/molecules that collide, but also for some
rigid bodies.

A simulation of a hard-sphere system in a
cylinder in the software MATLAB® was
developed using the fundamentals of MD and the
proposed equations to model collisions; some
static properties of the system were computed.

In a future work, particle collisions in
irregular-shape containers will be modeled, since
in real systems, the channels are constricted
spaces.
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3ITKHEHHSA YACTUHOK B OBMEXXEHOMY
IMPOCTOPI ITPU AHAJII3I
MOJIEKYJIAPHUMHU IUHAMIYHUMU
METOJAMUA

Anomauin. Memoro yiei pobomu € 3anponomy-
eamu Mooeib Oisl OMPUMAHH UWEUOKOCMI Ma Ha-
NPAMKIG, KONU 3IMKHEHHS CEEepUHHUX meepoux mil
B0UCHIOEMbCSL 34 OONOMO20I0 MOJLEKYIAPHOI OUHAMI-
xku (M). Monekynsipne MOOemO8aAHHS BUKOPUCTOBY -
€mbcsl 0JisL 0OUUCTIEHHS 61ACMUBOCTEl A NPOSHO3Y-
BAHHSL NOBEOIHKU MEEePOUX PeHO8UH, PIOUH ma 2as3is;
PO3271510 KONIZIL MINC YACMUHKAMU € (DYHOAMEHMA-

JILHUM, OCKIIbKU OHU G/SIIOMb COD0I0 3MIHY eHepeil

6 cucmemi. Konizii maxooic nos’szamni 3 wupoxum
CneKmpom 000amKie, maxkux sK pobomomexHika,
besnexa asmomoOibHo20 pyXy, sideoiepu, mamepia-
JIO3HABCMBO, KONOIOU ma iH., OeaKi 3 HUX MOJICHA
iHmepnpemyeamu AK NPYIHCHI 3IMKHEHHA MIJIC JHCOp-
cmkumu chepamu. [esxi ancopummu MJI] eurxopuc-
mMo8yIomb NEPiOOUYHI MediCl, 8 SKUX HACMKU MO-
arcyme pyxamucst, a He obmedicenuti npocmip. Ilpome
oL 6inbut peanicmuyHux 000amKie NOMpIiOHI aneo-
PUMMU MOOETIOBAHHSL KOMI3IL Y 3AMKHYMUX NPOCMO-
pax. Pienanns ons mooentosanus 3imMKHeHH 6 00-
MediceHux npocmopax 6ynu po3pobneni Oisi ompu-

ompumanns weuokocmeil cep, AKi CMUKarOmocs 3i
cminow (Konmeinepamu); yi popmynu cnpaseonusi,
KONU CMIHU € NPAMUMU, HANPUKIAO, Y YUILIHOpAx ma
kybax. Cumynsyis cucmemu meepoux cgep y yunino-
pi Oyna pospobrena 3 GUKOPUCMAHHIM OCHOBHUX
npunyunie MD ma npononosanux piensans 0.5t MoOe-
mosannst konizii 6 MATLAB. 3natioeno eéracmusocmi
cucmemu: paxyis amomnoi ynaxoeku (APF), ska
npeoCcmasnsc NpoCcmip, 3AUHAMUL AmoMamM 6 KOH-
metinepi; i piHOBAJICHA CMPYKMYPA Xapakmepusy-
eanacs Qyuxyielo padianvHo2o po3nodiny  g(r)
(RDF), sixka € nponopyitinoio UMOBIPHOCMIE 3HAXO-
O0JiCeHHsT 080X  amMoOMi6, PO30LIEHUX  BIOCMAHHIO
r + Ar. APF cucmemu cmanosuna 0,2 %, a wacmoma
3iMKHeHb ~ Ha ~ cmaodii  pieHOsacU  CMAHOBUILA
2,2810 x 10° 'y, mooi sx na emani supobruymea —
1,3995 x 10° T'y. IJa modens mooice Gymu 8uxopuc-
mana He mibKu O amomie / MOAeKyl, sKi CmuKa-
ombCsl, ane maxkoxc Onsl Oeskux meepoux min Y
nooanbulitt pobomi 3iIMKHEHHs. YACMUHOK Y KOHMel-
Hepax 3 HenpasusibHow Gopmoio Oy0yms Mooenosa-
MUCS, OCKIIbKU 8 PeAbHUX CUCTEMAX KAHAMU € CIU-
CHEeHUMU NPOCMOPAMU.

Knrouosi cnosa: monekynsapna OuHamixa, cumy-
JAYis, KO3, meepli chepu, mpackmopis uacmu-
HOK, pyHKYist po3noodiny.

CTOJIKHOBEHHUE YACTMUII B
OI'PAHUYEHHOM INPOCTPAHCTBE TP
AHAJIM3E MOJIEKYJIAPHBIMU
JAHAMUWYECKUMU METOJAMUA

Annomayus. Ilenvo nacmosiyel pabomol A67s1-
emcsi; npedyiodNcUms MOOeIb Oisl NOJIYHeHUsl CKOPOC-
My U HAnpaeienull, Koeoa CmoJKHO8eHUs chepuyec-
KUX MEepObIX Mmell OCYWeCEISIIOMC ¢ NOMOWbIO
monexyasapuou ounamuxu (MI]). Monrexynsaproe mo-
denuposanue  UCNOAb3Yemcsi  OMsL  GbIMUCTICHUS.
CBOUICME U NPOSHOZUPOBAHUSL NOBEOCHUL MBEPObIX
sewecms, JHCUOKOCMeEl U 2a308; pacCMOmMpenue KoJ-
JU3UL MedHcOy Yacmuyamul se1siemcs QyHoamenma-
JIbHBIM, NOCKOJILKY OHU €0V K USMEHEHUIO dHepeull
6 cucmenme.

Knrwouesvle cnosa: monexynapuas OUHAMUKA, CU-
MYNAYUs, KOJLIU3USL, meepovie chepbl, mpaexmopus
yacmuybwl, QYHKYUsE pACHpeOeIeHUs.




